Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures

被引:30
作者
Wuetz, B. Paquelet [1 ,2 ]
Bavdaz, P. L. [1 ,2 ]
Yeoh, L. A. [1 ,2 ]
Schouten, R. [1 ]
van der Does, H. [1 ]
Tiggelman, M. [1 ]
Sabbagh, D. [1 ,2 ]
Sammak, A. [3 ,4 ]
Almudever, C. G. [5 ,6 ]
Sebastiano, F. [1 ,2 ]
Clarke, J. S. [7 ]
Veldhorst, M. [1 ,2 ]
Scappucci, G. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
[3] QuTech, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[4] TNO, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[5] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[6] Delft Univ Technol, Comp Architecture Lab, POB 5046, NL-2600 GA Delft, Netherlands
[7] Intel Corp, Components Res, 2501 NW 229th Ave, Hillsboro, OR 97124 USA
关键词
LOGIC;
D O I
10.1038/s41534-020-0274-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuing advancements in quantum information processing have caused a paradigm shift from research mainly focused on testing the reality of quantum mechanics to engineering qubit devices with numbers required for practical quantum computation. One of the major challenges in scaling toward large-scale solid-state systems is the limited input/output (I/O) connectors present in cryostats operating at sub-kelvin temperatures required to execute quantum logic with high fidelity. This interconnect bottleneck is equally present in the device fabrication-measurement cycle, which requires high-throughput and cryogenic characterization to develop quantum processors. Here we multiplex quantum transport of two-dimensional electron gases at sub-kelvin temperatures. We use commercial off-the-shelf CMOS multiplexers to achieve an order of magnitude increase in the number of wires. Exploiting this technology, we accelerate the development of 300 mm epitaxial wafers manufactured in an industrial CMOS fab and report a remarkable electron mobility of (3.9 +/- 0.6) x 10(5) cm(2)/Vs and percolation density of (6.9 +/- 0.4) x 10(10) cm(-2), representing a key step toward large silicon qubit arrays. We envision that the demonstration will inspire the development of cryogenic electronics for quantum information, and because of the simplicity of assembly and versatility, we foresee widespread use of similar cryo-CMOS circuits for high-throughput quantum measurements and control of quantum engineered systems.
引用
收藏
页数:8
相关论文
共 36 条
  • [21] Universal quantum logic in hot silicon qubits
    Petit, L.
    Eenink, H. G. J.
    Russ, M.
    Lawrie, W. I. L.
    Hendrickx, N. W.
    Philips, S. G. J.
    Clarke, J. S.
    Vandersypen, L. M. K.
    Veldhorst, M.
    [J]. NATURE, 2020, 580 (7803) : 355 - +
  • [22] Pillarisetty R, 2018, TECHNICAL DIGEST INT
  • [23] Quantum Computing in the NISQ era and beyond
    Preskill, John
    [J]. QUANTUM, 2018, 2
  • [24] Multiplexed charge-locking device for large arrays of quantum devices
    Puddy, R. K.
    Smith, L. W.
    Al-Taie, H.
    Chong, C. H.
    Farrer, I.
    Griffiths, J. P.
    Ritchie, D. A.
    Kelly, M. J.
    Pepper, M.
    Smith, C. G.
    [J]. APPLIED PHYSICS LETTERS, 2015, 107 (14)
  • [25] Quantum Transport Properties of Industrial 28Si/28SiO2
    Sabbagh, D.
    Thomas, N.
    Torres, J.
    Pillarisetty, R.
    Amin, P.
    George, H. C.
    Singh, K.
    Budrevich, A.
    Robinson, M.
    Merrill, D.
    Ross, L.
    Roberts, J.
    Lampert, L.
    Massa, L.
    Amitonov, S. V.
    Boter, J. M.
    Droulers, G.
    Eenink, H. G. J.
    van Hezel, M.
    Donelson, D.
    Veldhorst, M.
    Vandersypen, L. M. K.
    Clarke, J. S.
    Scappucci, G.
    [J]. PHYSICAL REVIEW APPLIED, 2019, 12 (01):
  • [26] Strong spin-photon coupling in silicon
    Samkharadze, N.
    Zheng, G.
    Kalhor, N.
    Brousse, D.
    Sammak, A.
    Mendes, U. C.
    Blais, A.
    Scappucci, G.
    Vandersypen, L. M. K.
    [J]. SCIENCE, 2018, 359 (6380) : 1123 - 1126
  • [27] High-mobility Si and Ge structures
    Schaffler, F
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1997, 12 (12) : 1515 - 1549
  • [28] Quantum supremacy, here we come
    Terhal, Barbara M.
    [J]. NATURE PHYSICS, 2018, 14 (06) : 530 - 531
  • [29] Texas Instruments, 1997, CD54HC4094 CD74HC409
  • [30] Observation of percolation-induced two-dimensional metal-insulator transition in a Si MOSFET
    Tracy, L. A.
    Hwang, E. H.
    Eng, K.
    Ten Eyck, G. A.
    Nordberg, E. P.
    Childs, K.
    Carroll, M. S.
    Lilly, M. P.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2009, 79 (23):