Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures

被引:30
作者
Wuetz, B. Paquelet [1 ,2 ]
Bavdaz, P. L. [1 ,2 ]
Yeoh, L. A. [1 ,2 ]
Schouten, R. [1 ]
van der Does, H. [1 ]
Tiggelman, M. [1 ]
Sabbagh, D. [1 ,2 ]
Sammak, A. [3 ,4 ]
Almudever, C. G. [5 ,6 ]
Sebastiano, F. [1 ,2 ]
Clarke, J. S. [7 ]
Veldhorst, M. [1 ,2 ]
Scappucci, G. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
[3] QuTech, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[4] TNO, Stieltjesweg 1, NL-2628 CK Delft, Netherlands
[5] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[6] Delft Univ Technol, Comp Architecture Lab, POB 5046, NL-2600 GA Delft, Netherlands
[7] Intel Corp, Components Res, 2501 NW 229th Ave, Hillsboro, OR 97124 USA
关键词
LOGIC;
D O I
10.1038/s41534-020-0274-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Continuing advancements in quantum information processing have caused a paradigm shift from research mainly focused on testing the reality of quantum mechanics to engineering qubit devices with numbers required for practical quantum computation. One of the major challenges in scaling toward large-scale solid-state systems is the limited input/output (I/O) connectors present in cryostats operating at sub-kelvin temperatures required to execute quantum logic with high fidelity. This interconnect bottleneck is equally present in the device fabrication-measurement cycle, which requires high-throughput and cryogenic characterization to develop quantum processors. Here we multiplex quantum transport of two-dimensional electron gases at sub-kelvin temperatures. We use commercial off-the-shelf CMOS multiplexers to achieve an order of magnitude increase in the number of wires. Exploiting this technology, we accelerate the development of 300 mm epitaxial wafers manufactured in an industrial CMOS fab and report a remarkable electron mobility of (3.9 +/- 0.6) x 10(5) cm(2)/Vs and percolation density of (6.9 +/- 0.4) x 10(10) cm(-2), representing a key step toward large silicon qubit arrays. We envision that the demonstration will inspire the development of cryogenic electronics for quantum information, and because of the simplicity of assembly and versatility, we foresee widespread use of similar cryo-CMOS circuits for high-throughput quantum measurements and control of quantum engineered systems.
引用
收藏
页数:8
相关论文
共 36 条
  • [11] Assisted extraction of the energy level spacings and lever arms in direct current bias measurements of one-dimensional quantum wires, using an image recognition routine
    Lesage, A. A. J.
    Smith, L. W.
    Al-Taie, H.
    See, P.
    Griffiths, J. P.
    Farrer, I.
    Jones, G. A. C.
    Ritchie, D. A.
    Kelly, M. J.
    Smith, C. G.
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 117 (01)
  • [12] A crossbar network for silicon quantum dot qubits
    Li, Ruoyu
    Petit, Luca
    Franke, David P.
    Dehollain, Juan Pablo
    Helsen, Jonas
    Steudtner, Mark
    Thomas, Nicole K.
    Yoscovits, Zachary R.
    Singh, Kanwal J.
    Wehner, Stephanie
    Vandersypen, Lieven M. K.
    Clarke, James S.
    Veldhorst, Menno
    [J]. SCIENCE ADVANCES, 2018, 4 (07):
  • [13] Quantum computation with quantum dots
    Loss, D
    DiVincenzo, DP
    [J]. PHYSICAL REVIEW A, 1998, 57 (01): : 120 - 126
  • [14] Capacitively induced high mobility two-dimensional electron gas in undoped Si/Si1-xGex heterostructures with atomic-layer-deposited dielectric
    Lu, T. M.
    Liu, J.
    Kim, J.
    Lai, K.
    Tsui, D. C.
    Xie, Y. H.
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (18)
  • [15] Maxim Integrated, 1999, MAX4617 MAX4618 MAX4
  • [16] A coherent spin-photon interface in silicon
    Mi, X.
    Benito, M.
    Putz, S.
    Zajac, D. M.
    Taylor, J. M.
    Burkard, Guido
    Petta, J. R.
    [J]. NATURE, 2018, 555 (7698) : 599 - +
  • [17] Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
    Mi, X.
    Cady, J. V.
    Zajac, D. M.
    Stehlik, J.
    Edge, L. F.
    Petta, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (04)
  • [18] Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures
    Mi, X.
    Hazard, T. M.
    Payette, C.
    Wang, K.
    Zajac, D. M.
    Cady, J. V.
    Petta, J. R.
    [J]. PHYSICAL REVIEW B, 2015, 92 (03):
  • [19] The critical role of substrate disorder in valley splitting in Si quantum wells
    Neyens, Samuel F.
    Foote, Ryan H.
    Thorgrimsson, Brandur
    Knapp, T. J.
    McJunkin, Thomas
    Vandersypen, L. M. K.
    Amin, Payam
    Thomas, Nicole K.
    Clarke, James S.
    Savage, D. E.
    Lagally, M. G.
    Friesen, Mark
    Coppersmith, S. N.
    Eriksson, M. A.
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (24)
  • [20] Pauka S. J., 2019, PREPRINT