Linear Time Interactive Certificates for the Minimal Polynomial and the Determinant of a Sparse Matrix

被引:13
作者
Dumas, Jean -Guillaume [1 ]
Kaltofen, Erich [2 ]
Thome, Emmanuel [3 ]
Villard, Gilles [4 ]
机构
[1] Univ Grenoble Alpes, Lab LJK, CNRS, Umr 5224, 51 Av Math, F-38041 Grenoble, France
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Univ Lorraine, Caramba Inria Nancy, Inria, CNRS Loria, 615 Rue Jardin Bot, F-54600 ViIlers Les Nancy, France
[4] Univ Lyon, Lab LIP, CNRS, ENSL,Inria,UCBL, 46 Allee Italie, F-69364 Lyon, France
来源
PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016) | 2016年
基金
美国国家科学基金会;
关键词
COMPUTATION; EQUATIONS;
D O I
10.1145/2930889.2930908
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Computational problem certificates are additional data structures for each output, which can be used by a-possibly randomized-verification algorithm that proves the correctness of each output. In this paper, we give an algorithm that computes a certificate for the minimal polynomial of sparse or structured n x n matrices over an abstract field, of sufficiently large cardinality, whose Monte Carlo verification complexity requires a single matrix-vector multiplication and a linear number of extra field operations. We also propose a novel preconditioner that ensures irreducibility of the characteristic polynomial of the generically preconditioned matrix. This preconditioner takes linear time to be applied and uses only two random entries. We then combine these two techniques to give algorithms that compute certificates for the determinant, and thus for the characteristic polynomial, whose Monte Carlo verification complexity is therefore also linear.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 1997, THESIS
[2]   A UNIFORM APPROACH FOR THE FAST COMPUTATION OF MATRIX-TYPE PADE APPROXIMANTS [J].
BECKERMANN, B ;
LABAHN, G .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (03) :804-823
[3]  
Bertoni G, 2010, LECT NOTES COMPUT SC, V6225, P33, DOI 10.1007/978-3-642-15031-9_3
[4]   Efficient matrix preconditioners for black box linear algebra [J].
Chen, L ;
Eberly, W ;
Kaltofen, E ;
Saunders, BD ;
Turner, WJ ;
Villard, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 343 :119-146
[5]  
Chung KM, 2010, LECT NOTES COMPUT SC, V6223, P483, DOI 10.1007/978-3-642-14623-7_26
[6]   SOLVING HOMOGENEOUS LINEAR-EQUATIONS OVER GF(2) VIA BLOCK WIEDEMANN ALGORITHM [J].
COPPERSMITH, D .
MATHEMATICS OF COMPUTATION, 1994, 62 (205) :333-350
[7]   PROBABILISTIC REMARK ON ALGEBRAIC PROGRAM TESTING [J].
DEMILLO, RA ;
LIPTON, RJ .
INFORMATION PROCESSING LETTERS, 1978, 7 (04) :193-195
[8]  
Dumas J.G., 2016, TECHNICAL REPORT
[9]  
Dumas Jean-Guillaume, 2014, ISSAC 2014 PROC 39 I, P146
[10]  
Eberly W., RANDOMIZED LANCZOS A, P176