Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO2 reduction to CH3CHO over locally crystallized carbon nitride

被引:96
作者
Liu, Qiong [1 ]
Cheng, Hui [1 ]
Chen, Tianxiang [2 ]
Lo, Tsz Woon Benedict [2 ]
Xiang, Zhangmin [1 ]
Wang, Fuxian [1 ]
机构
[1] Guangdong Acad Sci, Inst Anal, China Natl Analyt Ctr, Guangzhou 510070, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, State Key Lab Chem Biol & Drug Discovery, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ACETALDEHYDE; EFFICIENT; ETHANOL; OXIDATION; DIOXIDE; ELECTROREDUCTION; FORMALDEHYDE; CONVERSION; INSIGHTS; CATALYST;
D O I
10.1039/d1ee02073k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic conversion of CO2 to CH3CHO is of increasing interest but confronts the significant challenges of forming C-C bonds and keeping the C=O bond intact throughout the process. Here, we report the selective photocatalytic hydrogenation of CO2 to CH3CHO using a modified polymeric carbon nitride (PCN) under mild conditions. The locally crystallized PCN offers a photocatalytic activity of 1814.7 mu mol h(-1) g(-1) with a high selectivity of 98.3% for CH3CHO production and a quantum efficiency of 22.4% at 385 nm, outperforming all the state-of-art CO2 photocatalysts. The promoted formation of the *OCCHO intermediate on the locally crystallized PCN is disclosed as the key factor leading to the highly selective CH3CHO generation. The locally crystallized PCN favors spontaneous C-C coupling towards *OCCHO formation rather than *CHO protonation, thus preventing HCHO formation. This work provides a new strategy for designing carbon nitrides for highly selective and sustainable conversion of CO2 to CH3CHO.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 58 条
[1]   Photocatalytic CO2 Reduction to C2+Products [J].
Albero, Josep ;
Peng, Yong ;
Garcia, Hermenegildo .
ACS CATALYSIS, 2020, 10 (10) :5734-5749
[2]   Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper [J].
Bertheussen, Erlend ;
Verdaguer-Casadevall, Arnau ;
Ravasio, Davide ;
Montoya, Joseph H. ;
Trimarco, Daniel B. ;
Roy, Claudie ;
Meier, Sebastian ;
Wendland, Juergen ;
Norskov, Jens K. ;
Stephens, Ifan E. L. ;
Chorkendorff, Ib .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (04) :1450-1454
[3]   Mechanistic Insights into Electroreductive C-C Coupling between CO and Acetaldehyde into Multicarbon Products [J].
Chang, Xiaoxia ;
Malkani, Arnav ;
Yang, Xuan ;
Xu, Bingjun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) :2975-2983
[4]  
Eckert M., 2006, ULLMANNS ENCY IND CH
[5]   Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products [J].
Garza, Alejandro J. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2018, 8 (02) :1490-1499
[6]   Exceptional Cocatalyst-Free Photo-Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization [J].
Hu, Cheng ;
Chen, Fang ;
Wang, Yonggang ;
Tian, Na ;
Ma, Tianyi ;
Zhang, Yihe ;
Huang, Hongwei .
ADVANCED MATERIALS, 2021, 33 (24)
[7]   Crystallinity-Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni3B for Efficient Water Oxidation [J].
Jiang, Wen-Jie ;
Niu, Shuai ;
Tang, Tang ;
Zhang, Qing-Hua ;
Liu, Xiao-Zhi ;
Zhang, Yun ;
Chen, Yu-Yun ;
Li, Ji-Hui ;
Gu, Lin ;
Wan, Li-Jun ;
Hu, Jin-Song .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (23) :6572-6577
[8]   Complete oxidation of acetaldehyde over a composite photocatalyst of graphitic carbon nitride and tungsten(VI) oxide under visible-light irradiation [J].
Jin, Zhengyuan ;
Murakami, Naoya ;
Tsubota, Toshiki ;
Ohno, Teruhisa .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 150 :479-485
[9]   Acetaldehyde from Ethylene-A Retrospective on the Discovery of the Wacker Process [J].
Jira, Reinhard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (48) :9034-9037
[10]   The Mechanism of the Wacker Reaction: A Tale of Two Hydroxypalladations [J].
Keith, John A. ;
Henry, Patrick M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (48) :9038-9049