Comparison of the Performance of Au, Pt and Rh Nanoparticles Supported on Mn/Alkali Titanate Nanotubes in Formaldehyde Oxidation at Room Temperature

被引:19
作者
Camposeco, R. [1 ]
Castillo, S. [2 ,3 ]
Nava, N. [2 ]
Maturano, V [1 ]
Zanella, R. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Aplicadas & Tecnol, Circuito Exterior S-N, Mexico City 04510, DF, Mexico
[2] Mexican Inst Petr, Prod Technol, Mexico City 07730, DF, Mexico
[3] ESIQIE IPN, Dept Chem Engn, Mexico City 75876, DF, Mexico
关键词
Formaldehyde; Nanoparticles; Alkali titanate; OH groups; Acidity; MANGANESE OXIDE CATALYSTS; INDOOR FORMALDEHYDE; PT/TIO2; CATALYST; CO OXIDATION; HCHO; REMOVAL; WATER; MNO2; ELIMINATION; NANOFIBERS;
D O I
10.1007/s10562-020-03254-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Au, Pd and Rh nanoparticles were supported on Mn/Na2Ti3O7 alkaline titanate nanotubes by the deposition-precipitation with NaOH method. The Pt-Mn/NT alkaline titanate showed outstanding catalytic performance accomplishing complete formaldehyde oxidation at 40 degrees C with apparent activation energy of 27 kJ mol(-1). The following tendency was observed for catalytic activity Pt > Au > Rh. The characterizations revealed the importance of the noble metals in the formation of vacancies and OH groups and their ability to activate the alkaline titanate surface oxygen species, which had an impact on the formation of acid sites (Bronsted and Lewis); another key factor for formaldehyde oxidation was metal dispersion. The presence of OH species facilitated the transformation of formaldehyde adsorbed on the M-Mn/alkaline titanate nanotubes, probably through the reaction with adsorbed O species, which promoted the decomposition of formaldehyde to CO2 at room temperature. [GRAPHICS] .
引用
收藏
页码:3342 / 3358
页数:17
相关论文
共 45 条
[1]   FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts [J].
Arana, J. ;
Alonso, A. Pena ;
Dona Rodriguez, J. M. ;
Colon, G. ;
Navio, J. A. ;
Perez Pena, J. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 89 (1-2) :204-213
[2]   The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J].
Bavykin, DV ;
Parmon, VN ;
Lapkin, AA ;
Walsh, FC .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (22) :3370-3377
[3]   Acid catalysts in industrial hydrocarbon chemistry [J].
Busca, Guido .
CHEMICAL REVIEWS, 2007, 107 (11) :5366-5410
[4]   Selective catalytic reduction of NOx by NH3 at low temperature over manganese oxide catalysts supported on titanate nanotubes [J].
Camposeco, R. ;
Castillo, S. ;
Rodriguez-Gonzalez, V. ;
Garcia-Serrano, Luz A. ;
Mejia-Centeno, Isidro .
CHEMICAL ENGINEERING COMMUNICATIONS, 2018, 205 (11) :1583-1593
[5]   Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2 nanostructures: Nanotubes, nanofibers and nanowires [J].
Camposeco, R. ;
Castillo, S. ;
Mejia-Centeno, Isidro ;
Navarrete, J. ;
Gomez, R. .
MATERIALS CHARACTERIZATION, 2014, 90 :113-120
[6]   MnO2 Promoted TiO2 Nanotube Array Supported Pt Catalyst for Formaldehyde Oxidation with Enhanced Efficiency [J].
Chen, Huayao ;
Tang, Minni ;
Rui, Zebao ;
Ji, Hongbing .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (36) :8900-8907
[7]   The structure of trititanate nanotubes [J].
Chen, Q ;
Du, GH ;
Zhang, S ;
Peng, LM .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :587-593
[8]   On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3 [J].
Costello, CK ;
Yang, JH ;
Law, HY ;
Wang, Y ;
Lin, JN ;
Marks, LD ;
Kung, MC ;
Kung, HH .
APPLIED CATALYSIS A-GENERAL, 2003, 243 (01) :15-24
[9]   Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions [J].
Cui, Weiyi ;
Xue, Dan ;
Yuan, Xiaoling ;
Zheng, Bin ;
Jia, Mingjun ;
Zhang, Wenxiang .
APPLIED SURFACE SCIENCE, 2017, 411 :105-112
[10]   The effect of oxygen vacancies and water on HCHO catalytic oxidation over Co3O4 catalyst: A combination of density functional theory and microkinetic study [J].
Deng, Jianlin ;
Song, Weiyu ;
Chen, Lulu ;
Wang, Lu ;
Jing, Meizan ;
Ren, Yu ;
Zhao, Zhen ;
Liu, Jian .
CHEMICAL ENGINEERING JOURNAL, 2019, 355 :540-550