Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning

被引:207
作者
Reid, Colleen E. [1 ]
Jerrett, Michael [1 ,8 ]
Petersen, Maya L. [2 ,3 ]
Pfister, Gabriele G. [4 ]
Morefield, Philip E. [5 ]
Tager, Ira B. [2 ]
Raffuse, Sean M. [6 ]
Balmes, John R. [1 ,7 ]
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Environm Hlth Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Sch Publ Hlth, Div Epidemiol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Sch Publ Hlth, Biostat Div, Berkeley, CA 94720 USA
[4] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA
[5] US EPA, Natl Ctr Environm Assessment, Washington, DC 20460 USA
[6] Sonoma Technol Inc, Petaluma, CA 94954 USA
[7] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[8] Univ Calif Los Angeles, Environm Hlth Sci Dept, Fielding Sch Publ Hlth, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
AEROSOL OPTICAL DEPTH; LAND-USE REGRESSION; FIRE SMOKE EXPOSURE; AIR-POLLUTION EVENTS; FOREST-FIRES; HOSPITAL ADMISSIONS; PM2.5; CONCENTRATIONS; TIME-SERIES; MORTALITY; MODEL;
D O I
10.1021/es505846r
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R-2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemp oral data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.
引用
收藏
页码:3887 / 3896
页数:10
相关论文
共 84 条
[1]   Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association [J].
Brook, Robert D. ;
Rajagopalan, Sanjay ;
Pope, C. Arden, III ;
Brook, Jeffrey R. ;
Bhatnagar, Aruni ;
Diez-Roux, Ana V. ;
Holguin, Fernando ;
Hong, Yuling ;
Luepker, Russell V. ;
Mittleman, Murray A. ;
Peters, Annette ;
Siscovick, David ;
Smith, Sidney C., Jr. ;
Whitsel, Laurie ;
Kaufman, Joel D. .
CIRCULATION, 2010, 121 (21) :2331-2378
[2]   Forest fires are associated with elevated mortality in a dense urban setting [J].
Analitis, Antonis ;
Georgiadis, Ioannis ;
Katsouyanni, Klea .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2012, 69 (03) :158-162
[3]  
[Anonymous], 35 INT S REM SENS EN
[4]  
[Anonymous], PM25 PM10 NAT EV DOC
[5]  
[Anonymous], COMMUNICATION
[6]  
[Anonymous], DYN TRAFF COUNTS
[7]  
[Anonymous], CARET CLASSIFICATION
[8]  
[Anonymous], J GEOPHYS RES ATMOS
[9]  
[Anonymous], 2011, ATMOS CHEM PHYS, DOI DOI 10.5194/acp-11-7515-2011
[10]  
[Anonymous], 2013 C INT SOC ENV E