Combination of computer-aided detection algorithms for automatic lung nodule identification

被引:42
作者
Camarlinghi, Niccolo [1 ,2 ]
Gori, Ilaria [3 ]
Retico, Alessandra [2 ]
Bellotti, Roberto [4 ,5 ,6 ]
Bosco, Paolo [7 ,8 ]
Cerello, Piergiorgio [9 ]
Gargano, Gianfranco [4 ,5 ]
Lopez Torres, Ernesto [10 ]
Megna, Rosario [4 ,5 ]
Peccarisi, Marco [11 ,12 ]
Fantacci, Maria Evelina [1 ,2 ]
机构
[1] Univ Pisa, Dipartimento Fis, Pisa, Italy
[2] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy
[3] Bracco Imaging SpA, Milan, Italy
[4] Univ Bari, Dipartimento Interateneo Fis M Merlin, Bari, Italy
[5] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[6] Ctr Innovat Technol Signal Detect & Proc TIRES, Bari, Italy
[7] Univ Genoa, Dipartimento Fis, Genoa, Italy
[8] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
[9] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[10] CEADEN, Havana, Cuba
[11] Univ Salento, Dipartimento Fis, Lecce, Italy
[12] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
关键词
Computer-aided detection; Computed tomography; Lung cancer; Medical image analysis; Pattern recognition; PULMONARY NODULES; CAD; CT;
D O I
10.1007/s11548-011-0637-6
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The aim of this work is to evaluate the potential of combining different computer-aided detection (CADe) methods to increase the actual support for radiologists of automated systems in the identification of pulmonary nodules in CT scans. The outputs of three different CADe systems developed by researchers of the Italian MAGIC-5 collaboration were combined. The systems are: the CAMCADe (based on a Channeler-Ant-Model which segments vessel tree and nodule candidates and a neural classifier), the RGVPCADe (a Region-Growing- Volume-Plateau algorithm detects nodule candidates and a neural network reduces false positives); the VBNACADe (two dedicated procedures, based respectively on a 3D dot-enhancement algorithm and on intersections of pleura surface normals, identifies internal and juxtapleural nodules, and a Voxel-Based-Neural-Approach reduces false positives. A dedicated OsiriX plugin implemented with the Cocoa environments of MacOSX allows annotating nodules and visualizing singles and combined CADe findings. The combined CADe has been tested on thin slice (lower than 2 mm) CTs of the LIDC public research database and the results have been compared with those obtained by the single systems. The FROC (Free Receiver Operating Characteristic) curves show better results than the best of the single approaches. Has been demonstrated that the combination of different approaches offers better results than each single CADe system. A clinical validation of the combined CADe as second reader is being addressed by means of the dedicated OsiriX plugin.
引用
收藏
页码:455 / 464
页数:10
相关论文
共 26 条
[1]  
[Anonymous], COMPUTER AIDED DETEC
[2]   A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model [J].
Bellotti, R. ;
De Carlo, F. ;
Gargano, G. ;
Tangaro, S. ;
Cascio, D. ;
Catanzariti, E. ;
Cerello, P. ;
Cheran, S. C. ;
Delogu, P. ;
De Mitri, I. ;
Fulcheri, C. ;
Grosso, D. ;
Retico, A. ;
Squarcia, S. ;
Tommasi, E. ;
Golosio, Bruno .
MEDICAL PHYSICS, 2007, 34 (12) :4901-4910
[3]   Distributed medical images analysis on a Grid infrastructure [J].
Bellotti, R. ;
Cerello, P. ;
Tangaro, S. ;
Bevilacqua, V. ;
Castellano, M. ;
Mastronardi, G. ;
De Carlo, F. ;
Bagnasco, S. ;
Bottigli, U. ;
Cataldo, R. ;
Catanzariti, E. ;
Cheran, S. C. ;
Delogu, P. ;
De Mitri, I. ;
De Nunzio, G. ;
Fantacci, M. E. ;
Fauci, F. ;
Gargano, G. ;
Golosio, B. ;
Indovina, P. L. ;
Lauria, A. ;
Lopez-Torres, E. ;
Magro, R. ;
Masala, G. L. ;
Massafra, R. ;
Oliva, P. ;
Martinez, A. Preite ;
Quarta, M. ;
Raso, G. ;
Retico, A. ;
Sitta, M. ;
Stumbo, S. ;
Tata, A. ;
Squarcia, S. ;
Schenone, A. ;
Molinari, E. ;
Canesi, B. .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2007, 23 (03) :475-484
[4]   Computer-aided detect ion of lung nodules on thin collimation MDCT: impact on radiologists' performance [J].
Brochu, B. ;
Beigelman-Aubry, C. ;
Goldmard, J-L ;
Raffy, P. ;
Grenier, P. A. ;
Lucidarme, O. .
JOURNAL DE RADIOLOGIE, 2007, 88 (04) :573-578
[5]  
Cerello P, 2008, 2008 IEEE NUCL SCI S, P3147
[6]   3-D object segmentation using ant colonies [J].
Cerello, Piergiorgio ;
Cheran, Sorin Christian ;
Bagnasco, Stefano ;
Bellotti, Roberto ;
Bolanos, Lourdes ;
Catanzariti, Ezio ;
De Nunzio, Giorgio ;
Fantacci, Maria Evelina ;
Fiorina, Elisa ;
Gargano, Gianfranco ;
Gemme, Gianluca ;
Torres, Ernesto Lopez ;
Masala, Gian Luca ;
Peroni, Cristiana ;
Santoro, Matteo .
PATTERN RECOGNITION, 2010, 43 (04) :1476-1490
[7]   Small pulmonary nodules:: Effect of two computer-aided detection systems on radiologist performance [J].
Das, Marco ;
Muehlenbruch, Georg ;
Mahnken, Andreas H. ;
Flohr, Thomas G. ;
Guendel, Lutz ;
Stanzel, Sven ;
Kraus, Thomas ;
Guenther, Rolf W. ;
Wildberger, Joachim E. .
RADIOLOGY, 2006, 241 (02) :564-571
[8]  
De Nunzio G, 2009, J DIGIT IMAGING
[9]   Detection of pulmonary nodules at spiral CT: comparison of maximum intensity projection sliding slabs and single-image reporting [J].
Diederich, S ;
Lentschig, MG ;
Overbeck, TR ;
Wormanns, D ;
Heindel, W .
EUROPEAN RADIOLOGY, 2001, 11 (08) :1345-1350
[10]   Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 [J].
Ferlay, Jacques ;
Shin, Hai-Rim ;
Bray, Freddie ;
Forman, David ;
Mathers, Colin ;
Parkin, Donald Maxwell .
INTERNATIONAL JOURNAL OF CANCER, 2010, 127 (12) :2893-2917