Gorenstein projective and flat complexes over noetherian rings

被引:16
作者
Enochs, E. [2 ]
Estrada, S. [3 ]
Iacob, A. [1 ]
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[3] Univ Murcia, Dept Matemat Aplicada, Espinardo 30100, Murcia, Spain
关键词
Precover; cover; Gorenstein flat complex; Gorenstein projective complex; MSC (2010) 18G35; 18G25; HOMOLOGICAL DIMENSIONS; MODULES;
D O I
10.1002/mana.201000138
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sufficient conditions on a class of R-modules C in order for the class of complexes of C-modules, dwC, to be covering in the category of complexes of R-modules. More precisely, we prove that if C is precovering in R - Mod and if C is closed under direct limits, direct products, and extensions, then the class dwC is covering in Ch(R). Our first application concerns the class of Gorenstein flat modules. We show that when the ring R is two sided noetherian, a complex C is Gorenstein flat if and only if each module C-n is Gorenstein flat. If moreover every direct product of Gorenstein flat modules is a Gorenstein flat module, then the class of Gorenstein flat complexes is covering. We consider Gorenstein projective complexes as well. We prove that if R is a commutative noetherian ring of finite Krull dimension, then the class of Gorenstein projective complexes coincides with that of complexes of Gorenstein projective modules. We also show that if R is commutative noetherian with a dualizing complex then every right bounded complex has a Gorenstein projective precover. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:834 / 851
页数:18
相关论文
共 15 条
[1]   HOMOLOGICAL DIMENSIONS OF UNBOUNDED COMPLEXES [J].
AVRAMOV, LL ;
FOXBY, HB .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 71 (2-3) :129-155
[2]   All modules have flat covers [J].
Bican, L ;
El Bashir, R ;
Enochs, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2001, 33 :385-390
[3]   On Gorenstein projective, injective and flat dimensions - A functorial description with applications [J].
Christensen, Lars Winther ;
Frankild, Anders ;
Holm, Henrik .
JOURNAL OF ALGEBRA, 2006, 302 (01) :231-279
[4]  
ENOCHS E., 1996, MATH J OKAYAMA U, V38, P25
[5]  
Enochs E. E., 1993, J NANJING U, V10, P1
[6]  
Enochs E. E., 2000, RELATIVE HOMOLOGICAL, V30
[7]   GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES [J].
ENOCHS, EE ;
JENDA, OMG .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) :611-633
[8]  
Enochs EE, 2002, REND SEM MAT UNIV P, V107, P67
[9]   Gorenstein homological dimensions [J].
Holm, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) :167-193
[10]  
Holm H., J MATH APPE IN PRESS