Grassmannians of secant varieties

被引:27
作者
Chiantini, L
Coppens, M
机构
[1] Univ Siena, Dipartimento Matemat, I-53100 Siena, Italy
[2] Katholieke Hogesch Kempen, Dept Ind Ingenieur & Biotech, B-2440 Geel, Belgium
关键词
D O I
10.1515/form.2001.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an irreducible projective variety X, we study the family of h-planes contained in the secant variety S-k(X), for 0 < h < k. These families have an expected dimension and we study varieties for which the expected dimension is not attained; for these varieties, making general consecutive projections to lower dimensional spaces, we do not get the expected singularities. In particular, we examine the family G(1,2) of lines sitting in 3-secant planes to a surface S. We show that the actual dimension of G(1,2) is equal to the expected dimension unless S is a cone or a rational normal scroll of degree 4 in P-5.
引用
收藏
页码:615 / 628
页数:14
相关论文
共 9 条
[1]  
Bronowski Jacob, 1933, P CAMB PHILOS SOC, P465
[2]  
Ciliberto Ciro, 1992, J ALGEBRAIC GEOM, V1, P231
[3]  
HARRIS J, 1992, SPRINGER GRADUATE TE, V133
[4]  
Hartshorne R., 1977, SPRINGER GRADUATE TE, V52
[5]  
MEZZETTI E, 1994, B UNIONE MAT ITAL, V8B, P807
[6]  
SCORZA G, 1907, REND CIRC MAT PALERM, V25, P193
[7]  
SEGRE C, 1921, ATTI R ACCAD SCI TOR, V57, P75
[8]  
Terracini A., 1915, ANN MAT PUR APPL, V24, P1, DOI DOI 10.1007/BF02419670
[9]  
ZAK FL, 1993, TRASNL MATH MONOGR, V127