Uncertainty-Aware Geographic Atrophy Progression Prediction from Fundus Autofluorescence

被引:0
作者
Yang, Qi [1 ,2 ]
Anegondi, Neha [2 ,3 ]
Steffen, Verena [2 ,4 ]
Gao, Simon S. [2 ,3 ]
Cluceru, Julia [2 ,3 ]
Rabe, Christina [2 ,4 ]
Dai, Jian [1 ,2 ]
Ferrara, Daniela [1 ,2 ]
机构
[1] Genentech Inc, Data Sci Imaging, San Francisco, CA 94080 USA
[2] Genentech Inc, Roche Personalized Healthcare, San Francisco, CA 94080 USA
[3] Genentech Inc, Clin Imaging Grp, San Francisco, CA 94080 USA
[4] Genentech Inc, Biostat, San Francisco, CA 94080 USA
来源
APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2022 | 2022年 / 13540卷
关键词
Geographic atrophy; Uncertainty; Out-of-distribution; Multitask learning; Fundus autofluorescence; Disease prediction; MACULAR DEGENERATION; NATURAL-HISTORY; SECONDARY; EYE;
D O I
10.1007/978-3-031-17721-7_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geographic atrophy (GA) is an advanced form of age-related macular degeneration leading to progressive visual loss. The ability to accurately predict GA progression over time based on a single baseline visit can improve clinical trials in GA, as well as support patient counseling in current clinical practice. The feasibility of using baseline fundus autofluorescence (FAF) images to predict GA progression with end-to-end deep learning models has been demonstrated. However, for black-box models, there is a need to increase trust for clinical practice applications and estimate the prediction uncertainty. In this paper, we applied and evaluated both non-parametric and parametric deep ensemble approaches for the prediction uncertainty estimation using both simulated and clinical study data in a multitask regression setting. The results not only show promising performance in detecting near and far out-of-distribution data cases, but may also suggest the improved performance in predicting GA growth rate for in-distribution data.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 23 条
  • [1] A review of uncertainty quantification in deep learning: Techniques, applications and challenges
    Abdar, Moloud
    Pourpanah, Farhad
    Hussain, Sadiq
    Rezazadegan, Dana
    Liu, Li
    Ghavamzadeh, Mohammad
    Fieguth, Paul
    Cao, Xiaochun
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    [J]. INFORMATION FUSION, 2021, 76 : 243 - 297
  • [2] Predicting geographic atrophy growth rate from fundus autofluorescence images using deep neural networks
    Anegondi, Neha
    Yang, Qi
    Kawczynski, Michael
    Steffen, Verena
    Gao, Simon S.
    [J]. MULTIMODAL BIOMEDICAL IMAGING XVI, 2021, 11634
  • [3] Geographic Atrophy Progression in Eyes with Age-Related Macular Degeneration: Role of Fundus Autofluorescence Patterns, Fellow Eye and Baseline Atrophy Area
    Batioglu, Figen
    Oguz, Yesim Gedik
    Demirel, Sibel
    Ozmert, Emin
    [J]. OPHTHALMIC RESEARCH, 2014, 52 (02) : 53 - 59
  • [4] USE OF FUNDUS AUTOFLUORESCENCE IMAGES TO PREDICT GEOGRAPHIC ATROPHY PROGRESSION
    Bearelly, Srilaxmi
    Khanifar, Aziz A.
    Lederer, David E.
    Lee, Jane J.
    Ghodasra, Jason H.
    Stinnett, Sandra S.
    Cousins, Scott W.
    [J]. RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2011, 31 (01): : 81 - 86
  • [5] Bogunovic H, 2021, INVEST OPHTH VIS SCI, V62
  • [6] THE PATHOPHYSIOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION AND THE COMPLEMENT PATHWAY AS A THERAPEUTIC TARGET
    Boyer, David S.
    Schmidt-Erfurth, Ursula
    Campagne, Menno van Lookeren
    Henry, Erin C.
    Brittain, Christopher
    [J]. RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2017, 37 (05): : 819 - 835
  • [7] Buslaev A, 2018, Arxiv, DOI arXiv:1809.06839
  • [8] Leveraging prognostic baseline variables to gain precision in randomized trials
    Colantuoni, Elizabeth
    Rosenblum, Michael
    [J]. STATISTICS IN MEDICINE, 2015, 34 (18) : 2602 - 2617
  • [9] The Progression of Geographic Atrophy Secondary to Age-Related Macular Degeneration
    Fleckenstein, Monika
    Mitchell, Paul
    Freund, K. Bailey
    Sadda, SriniVas
    Holz, Frank G.
    Brittain, Christopher
    Henry, Erin C.
    Ferrara, Daniela
    [J]. OPHTHALMOLOGY, 2018, 125 (03) : 369 - 390
  • [10] Friesenhahn M., 2020, Invest Ophthalmol Vis Sci, V61, P2988