Parylene to silicon nitride bonding for post-integration of high pressure microfluidics to CMOS devices

被引:23
作者
Ciftlik, Ata Tuna [1 ]
Gijs, Martin A. M. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Microsyst 2, CH-1015 Lausanne, Switzerland
关键词
TEMPERATURE; FABRICATION; CHANNELS; POLYMERS; PROBES;
D O I
10.1039/c1lc20727j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High pressure-rated channels allow microfluidic assays to be performed on a smaller footprint while keeping the throughput, thanks to the higher enabled flow rates, opening up perspectives for cost-effective integration of CMOS chips to microfluidic circuits. Accordingly, this study introduces an easy, low-cost and efficient method for realizing high pressure microfluidics-to-CMOS integration. First, we report a new low temperature (280 degrees C) Parylene-C wafer bonding technique, where O-2 plasma-treated Parylene-C bonds directly to Si3N4 with an average bonding strength of 23 MPa. The technique works for silicon wafers with a nitride surface and uses a single layer of Parylene-C deposited only on one wafer, and allows microfluidic structures to be easily formed by directly bonding to the nitride passivation layer of the CMOS devices. Exploiting this technology, we demonstrated a microfluidic chip burst pressure as high as 16 MPa, while metal electrode structures on the silicon wafer remained functional after bonding.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 27 条
  • [1] Room-temperature intermediate layer bonding for microfluidic devices
    Bart, Jacob
    Tiggelaar, Roald
    Yang, Menglong
    Schlautmann, Stefan
    Zuilhof, Han
    Gardeniers, Han
    [J]. LAB ON A CHIP, 2009, 9 (24) : 3481 - 3488
  • [2] Effects of gas pressure and substrate temperature on the etching of parylene-N using a remote microwave oxygen plasma
    Callahan, RRA
    Raupp, GB
    Beaudoin, SP
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2001, 19 (03): : 725 - 731
  • [3] A low-temperature parylene-to-silicon dioxide bonding technique for high-pressure microfluidics
    Ciftlik, A. T.
    Gijs, M. A. M.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (03)
  • [4] Monolithic Silicon Chip for Immunofluorescence Detection on Single Magnetic Beads
    Dupont, Emile P.
    Labonne, Estelle
    Vandevyver, Caroline
    Lehmann, Ulrike
    Charbon, Edoardo
    Gijs, Martin A. M.
    [J]. ANALYTICAL CHEMISTRY, 2010, 82 (01) : 49 - 52
  • [5] Determining the optimal PDMS-PDMS bonding technique for microfluidic devices
    Eddings, Mark A.
    Johnson, Michael A.
    Gale, Bruce K.
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (06)
  • [6] Thermal buckling of silicon capacitive pressure sensor
    Ettouhami, A
    Essaid, A
    Ouakrim, N
    Michel, L
    Limouri, M
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1996, 57 (03) : 167 - 171
  • [7] High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths
    Hasselbrink, EF
    Shepodd, TJ
    Rehm, JE
    [J]. ANALYTICAL CHEMISTRY, 2002, 74 (19) : 4913 - 4918
  • [8] The Bond Strength of Au/Si Eutectic Bonding Studied by IR Microscope
    Jing, Errong
    Xiong, Bin
    Wang, Yuelin
    [J]. IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, 2010, 33 (01): : 31 - 37
  • [9] Characterization of low-temperature wafer bonding using thin-film Parylene
    Kim, H
    Najafi, K
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (06) : 1347 - 1355
  • [10] Low temperature fabrication of immersion capacitive micromachined ultrasonic transducers on silicon and dielectric substrates
    Knight, J
    McLean, J
    Degertekin, FL
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2004, 51 (10) : 1324 - 1333