QM/MM study of catalytic mechanism of Xylanase Cex from Cellulomonas fimi

被引:16
作者
Liu, Jingli [1 ]
Zhang, Chunchun [2 ]
Xu, Dingguo [1 ]
机构
[1] Sichuan Univ, Coll Chem, MOE Key Lab Green Chem & Technol, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Analyt & Test Ctr, Chengdu 610064, Sichuan, Peoples R China
关键词
QM/MM; Molecular dynamics; Xylanase; Substrate distortion; Retention mechanism; SEQUENCE-BASED CLASSIFICATION; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; BETA-1,4-GLYCANASE CEX; SUBSTRATE DISTORTION; FREE-ENERGIES; BINDING; QUANTUM; RESOLUTION; INSIGHTS;
D O I
10.1016/j.jmgm.2012.04.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Xylanase Cex from Cellulomonas fimi is a bifunctional enzyme that catalyzes the degradation of both cellulose and xylan. As a result, it might find valuable applications in production of biofuels. In this work, we presented a detailed theoretical investigation of hydrolysis of the xylopentaose molecule catalyzed by Cex, using a hybrid quantum mechanical and molecular mechanical approach. Our results support the experimental observation that the hydrolysis proceeds via the net retention mechanism. More interestingly, our simulations indicate that the xylose unit at-1 binding site should take a boat (B-2.5) conformation as a possible reactive conformer, while the oxo-carbenium ion-like transition states take the combination of B-2.5/S-O(2) for glycosylation, and S-O(2)/B-O,B-3 for deglycosylation. Our molecular dynamics simulations of mutants further suggest that two catalytic residues (E127 and E233) play the vital role in this ring distortion. Indeed, this conformational change is necessary to facilitate the first step of nucleophilic attack by E233 at the anomeric carbon center. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 67 条
[1]   CRYSTALLIZATION AND PRELIMINARY-X-RAY DIFFRACTION ANALYSIS OF THE CATALYTIC DOMAIN OF CEX, AN EXO-BETA-1,4-GLUCANASE AND BETA-1,4-XYLANASE FROM THE BACTERIUM CELLULOMONAS-FIMI [J].
BEDARKAR, S ;
GILKES, NR ;
KILBURN, DG ;
KWAN, E ;
ROSE, DR ;
MILLER, RC ;
WARREN, RAJ ;
WITHERS, SG .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 228 (02) :693-695
[2]   Quantitative description of six-membered ring conformations following the IUPAC conformational nomenclature [J].
Bérces, A ;
Whitfield, DM ;
Nukada, T .
TETRAHEDRON, 2001, 57 (03) :477-491
[3]   Substrate distortion in the michaelis complex of Bacillus 1,3-1,4-β-glucanase -: Insight from first principles molecular dynamics simulations [J].
Biarnés, X ;
Nieto, J ;
Planas, A ;
Rovira, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (03) :1432-1441
[4]   The conformational free energy landscape of β-D-glucopyranose. implications for substrate preactivation in β-glucoside hydrolases [J].
Biarnes, Xevi ;
Ardevol, Albert ;
Planas, Antoni ;
Rovira, Carme ;
Laio, Alessandro ;
Parrinello, Michele .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (35) :10686-10693
[5]   ACTIVE-SITE DYNAMICS IN PROTEIN MOLECULES - A STOCHASTIC BOUNDARY MOLECULAR-DYNAMICS APPROACH [J].
BROOKS, CL ;
BRUNGER, A ;
KARPLUS, M .
BIOPOLYMERS, 1985, 24 (05) :843-865
[6]   The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved [J].
Charnock, SJ ;
Spurway, TD ;
Xie, HF ;
Beylot, MH ;
Virden, R ;
Warren, RAJ ;
Hazlewood, GP ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32187-32199
[7]   Xylanases, xylanase families and extremophilic xylanases [J].
Collins, T ;
Gerday, C ;
Feller, G .
FEMS MICROBIOLOGY REVIEWS, 2005, 29 (01) :3-23
[8]   A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method [J].
Cui, Q ;
Elstner, M ;
Kaxiras, E ;
Frauenheim, T ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (02) :569-585
[9]   Nomenclature for sugar-binding subsites in glycosyl hydrolases [J].
Davies, GJ ;
Wilson, KS ;
Henrissat, B .
BIOCHEMICAL JOURNAL, 1997, 321 :557-559
[10]  
DEREWENDA U, 1994, J BIOL CHEM, V269, P20811