Fading Mechanisms and Voltage Hysteresis in FeF2-NiF2 Solid Solution Cathodes for Lithium and Lithium-Ion Batteries

被引:74
作者
Huang, Qiao [1 ,2 ]
Pollard, Travis P. [3 ]
Ren, Xiaolei [2 ,4 ]
Kim, Doyoub [2 ]
Magasinski, Alexandre [2 ]
Borodin, Oleg [3 ]
Yushin, Gleb [2 ]
机构
[1] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] US Army, Res Lab, Sensor & Elector Devices Directorate, Electrochem Branch, Adelphi, MD 20783 USA
[4] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
关键词
density functional theory; electrolyte decomposition; hysteresis; lithium-ion batteries; metal fluorides; METAL FLUORIDE NANOCOMPOSITES; IRON FLUORIDE; LIPF6-BASED ELECTROLYTES; FLUOROETHYLENE CARBONATE; DECOMPOSITION REACTION; RECHARGEABLE LITHIUM; ETHYLENE CARBONATE; ENERGY-STORAGE; CONVERSION; ELECTRODES;
D O I
10.1002/smll.201804670
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The rapid development of ultrahigh-capacity alloying or conversion-type anodes in rechargeable lithium (Li)-ion batteries calls for matching cathodes for next-generation energy storage devices. The high volumetric and gravimetric capacities, low cost, and abundance of iron (Fe) make conversion-type iron fluoride (FeF2 and FeF3)-based cathodes extremely promising candidates for high specific energy cells. Here, the substantial boost in the capacity of FeF2 achieved with the addition of NiF2 is reported. A systematic study of a series of FeF2-NiF2 solid solution cathodes with precisely controlled morphology and composition reveals that the presence of Ni may undesirably accelerate capacity fading. Using a powerful combination of state-of-the-art analytical techniques in combination with the density functional theory calculations, fundamental mechanisms responsible for such a behavior are uncovered. The unique insights reported in this study highlight the importance of careful selection of metals and electrolytes for optimizing electrochemical properties of metal fluoride cathodes.
引用
收藏
页数:11
相关论文
共 57 条
[21]   Metal Fluorides Nanoconfined in Carbon Nanopores as Reversible High Capacity Cathodes for Li and Li-Ion Rechargeable Batteries: FeF2 as an Example [J].
Gu, Wentian ;
Magasinski, Alexandre ;
Zdyrko, Bogdan ;
Yushin, Gleb .
ADVANCED ENERGY MATERIALS, 2015, 5 (04)
[22]   Ab-initio simulations of materials using VASP:: Density-functional theory and beyond [J].
Hafner, Juergen .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (13) :2044-2078
[23]   The atomic simulation environment-a Python']Python library for working with atoms [J].
Hjorth Larsen, Ask ;
Mortensen, Jens Jorgen ;
Blomqvist, Jakob ;
Castelli, Ivano E. ;
Christensen, Rune ;
Dulak, Marcin ;
Friis, Jesper ;
Groves, Michael N. ;
Hammer, Bjork ;
Hargus, Cory ;
Hermes, Eric D. ;
Jennings, Paul C. ;
Jensen, Peter Bjerre ;
Kermode, James ;
Kitchin, John R. ;
Kolsbjerg, Esben Leonhard ;
Kubal, Joseph ;
Kaasbjerg, Kristen ;
Lysgaard, Steen ;
Maronsson, Jon Bergmann ;
Maxson, Tristan ;
Olsen, Thomas ;
Pastewka, Lars ;
Peterson, Andrew ;
Rostgaard, Carsten ;
Schiotz, Jakob ;
Schutt, Ole ;
Strange, Mikkel ;
Thygesen, Kristian S. ;
Vegge, Tejs ;
Vilhelmsen, Lasse ;
Walter, Michael ;
Zeng, Zhenhua ;
Jacobsen, Karsten W. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
[24]   Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery [J].
Hua, Xiao ;
Robert, Rosa ;
Du, Lin-Shu ;
Wiaderek, Kamila M. ;
Leskes, Michal ;
Chapman, Karena W. ;
Chupas, Peter J. ;
Grey, Clare P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (28) :15169-15184
[25]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[26]   Freestanding Bilayer Carbon-Sulfur Cathode with Function of Entrapping Polysulfide for High Performance Li-S Batteries [J].
Kang, Hyo-Seok ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (08) :1225-1232
[27]   Decomposition reaction of LiPF6-based electrolytes for lithium ion cells [J].
Kawamura, T ;
Okada, S ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 2006, 156 (02) :547-554
[28]   Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries [J].
Kim, Koeun ;
Park, Inbok ;
Ha, Se-Young ;
Kim, Yeonkyoung ;
Woo, Myung-Heuio ;
Jeong, Myung-Hwan ;
Shin, Woo Cheol ;
Ue, Makoto ;
Hong, Sung You ;
Choi, Nam-Soon .
ELECTROCHIMICA ACTA, 2017, 225 :358-368
[29]   Transport, Phase Reactions, and Hysteresis of Iron Fluoride and Oxyfluoride Conversion Electrode Materials for Lithium Batteries [J].
Ko, Jonathan K. ;
Wiaderek, Kamila M. ;
Pereira, Nathalie ;
Kinnibrugh, Tiffany L. ;
Kim, Joshua R. ;
Chupas, Peter J. ;
Chapman, Karena W. ;
Amatucci, Glenn G. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :10858-10869
[30]   Conversion mechanism of nickel fluoride and NiO-doped nickel fluoride in Li ion batteries [J].
Lee, Dae Hoe ;
Carroll, Kyler J. ;
Calvin, Scott ;
Jin, Sungho ;
Meng, Ying Shirley .
ELECTROCHIMICA ACTA, 2012, 59 :213-221