Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests

被引:16
作者
Lin, Wan-Yu [1 ,2 ]
Huang, Ching-Chieh [1 ]
Liu, Yu-Li [3 ]
Tsai, Shih-Jen [4 ,5 ]
Kuo, Po-Hsiu [1 ,2 ]
机构
[1] Natl Taiwan Univ, Coll Publ Hlth, Inst Epidemiol & Prevent Med, Taipei, Taiwan
[2] Natl Taiwan Univ, Coll Publ Hlth, Dept Publ Hlth, Taipei, Taiwan
[3] Natl Hlth Res Inst, Ctr Neuropsychiat Res, Zhunan, Taiwan
[4] Taipei Vet Gen Hosp, Dept Psychiat, Taipei, Taiwan
[5] Natl Yang Ming Univ, Div Psychiat, Taipei, Taiwan
来源
FRONTIERS IN GENETICS | 2019年 / 9卷
关键词
diastolic blood pressure; systolic blood pressure; hypertension; gene-alcohol interaction; Taiwan Biobank; multiple testing correction; BLOOD-PRESSURE; RARE; ALCOHOL; VARIANTS; RISK;
D O I
10.3389/fgene.2018.00715
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The identification of gene-environment interactions (G x E) may eventually guide health-related choices and medical interventions for complex diseases. More powerful methods must be developed to identify G x E. The "adaptive combination of Bayes factors method" (ADABF) has been proposed as a powerful genome-wide polygenic approach to detect G x E. In this work, we evaluate its performance when serving as a gene-based G x E test. We compare ADABF with six tests including the "Set-Based gene-EnviRonment InterAction test" (SBERIA), "gene-environment set association test" (GESAT), etc. With extensive simulations, SBERIA and ADABF are found to be more powerful than other G x E tests. However, SBERIA suffers from a power loss when 50% SNP main effects are in the same direction with the SNP x E interaction effects while 50% are in the opposite direction. We further applied these seven G x E methods to the Taiwan Biobank data to explore genex alcohol interactions on blood pressure levels. The ADAMTS7P1 gene at chromosome 15q25.2 was detected to interact with alcohol consumption on diastolic blood pressure (p = 9.5 x 10(-7), according to the GESAT test). At this gene, the P-values provided by other six tests all reached the suggestive significance level (p < 5 x 10(-5)). Regarding the computation time required for a genome-wide G x E analysis, SBERIA is the fastest method, followed by ADABF. Considering the validity, power performance, robustness, and computation time, ADABF is recommended for genome-wide G x E analyses.
引用
收藏
页数:15
相关论文
共 44 条
[1]   Prevalence and Associated Factors of Hypertension: A Crossectional Community Based Study in Northwest Ethiopia [J].
Abebe, Solomon Mekonnen ;
Berhane, Yemane ;
Worku, Alemayehu ;
Getachew, Assefa .
PLOS ONE, 2015, 10 (04)
[2]  
[Anonymous], 1998, THEORY PROBABILITY
[3]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[4]   Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project [J].
Chen, Chien-Hsiun ;
Yang, Jenn-Hwai ;
Chiang, Charleston W. K. ;
Hsiung, Chia-Ni ;
Wu, Pei-Ei ;
Chang, Li-Ching ;
Chu, Hou-Wei ;
Chang, Josh ;
Song, I-Wen ;
Yang, Show-Ling ;
Chen, Yuan-Tsong ;
Liu, Fu-Tong ;
Shen, Chen-Yang .
HUMAN MOLECULAR GENETICS, 2016, 25 (24) :5321-5331
[5]   Incorporating Gene-Environment Interaction in Testing for Association with Rare Genetic Variants [J].
Chen, Han ;
Meigs, James B. ;
Dupuis, Josee .
HUMAN HEREDITY, 2014, 78 (02) :81-90
[6]   Carbamazepine-Induced Toxic Effects and HLA-B*1502 Screening in Taiwan [J].
Chen, Pei ;
Lin, Juei-Jueng ;
Lu, Chin-Song ;
Ong, Cheung-Ter ;
Hsieh, Peiyuan F. ;
Yang, Chih-Chao ;
Tai, Chih-Ta ;
Wu, Shey-Lin ;
Lu, Cheng-Hsien ;
Hsu, Yung-Chu ;
Yu, Hsiang-Yu ;
Ro, Long-Sun ;
Lu, Chung-Ta ;
Chu, Chun-Che ;
Tsai, Jing-Jane ;
Su, Yu-Hsiang ;
Lan, Sheng-Hsing ;
Sung, Sheng-Feng ;
Lin, Shu-Yi ;
Chuang, Hui-Ping ;
Huang, Li-Chen ;
Chen, Ying-Ju ;
Tsai, Pei-Joung ;
Liao, Hung-Ting ;
Lin, Yu-Hsuan ;
Chen, Chien-Hsiun ;
Chung, Wen-Hung ;
Hung, Shuen-Iu ;
Wu, Jer-Yuarn ;
Chang, Chi-Feng ;
Chen, Luke ;
Chen, Yuan-Tsong ;
Shen, Chen-Yang .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (12) :1126-1133
[7]   Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction [J].
Dai, James Y. ;
Kooperberg, Charles ;
Leblanc, Michael ;
Prentice, Ross L. .
BIOMETRIKA, 2012, 99 (04) :929-944
[8]   Gene-Environment Dependence Creates Spurious Gene-Environment Interaction [J].
Dudbridge, Frank ;
Fletcher, Olivia .
AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 95 (03) :301-307
[9]   A Statistical Approach for Rare-Variant Association Testing in Affected Sibships [J].
Epstein, Michael P. ;
Duncan, Richard ;
Ware, Erin B. ;
Jhun, Min A. ;
Bielak, Lawrence F. ;
Zhao, Wei ;
Smith, Jennifer A. ;
Peyser, Patricia A. ;
Kardia, Sharon L. R. ;
Satten, Glen A. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (04) :543-554
[10]   Putting the Genome in Context: Gene-Environment Interactions in Type 2 Diabetes [J].
Franks, Paul W. ;
Pare, Guillaume .
CURRENT DIABETES REPORTS, 2016, 16 (07)