Holomorphic disks and genus bounds

被引:252
作者
Ozsváth, P
Szabó, Z
机构
[1] Columbia Univ, Dept Math, New York, NY 10025 USA
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Thurston norm; Dehn surgery; Seifert genus; Floer homology; contact structures;
D O I
10.2140/gt.2004.8.311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that, like the Seiberg-Witten monopole homology, the Heegaard Floer homology for a three-manifold determines its Thurston norm. As a consequence, we show that knot Floer homology detects the genus of a knot. This leads to new proofs of certain results previously obtained using Seiberg-Witten monopole Floer homology ( in collaboration with Kronheimer and Mrowka). It also leads to a purely Morse-theoretic interpretation of the genus of a knot. The method of proof shows that the canonical element of Heegaard Floer homology associated to a weakly symplectically fillable contact structure is non-trivial. In particular, for certain three-manifolds, Heegaard Floer homology gives obstructions to the existence of taut foliations.
引用
收藏
页码:311 / 334
页数:24
相关论文
共 41 条
  • [1] Lefschetz fibrations on compact Stein surfaces
    Akbulut, Selman
    Ozbagci, Burak
    [J]. GEOMETRY & TOPOLOGY, 2001, 5 : 319 - 334
  • [2] [Anonymous], 1987, ANN MATH STUDIES
  • [3] Donaldson SK, 1999, J DIFFER GEOM, V53, P205
  • [4] A few remarks about symplectic filling
    Eliashberg, Y
    [J]. GEOMETRY & TOPOLOGY, 2004, 8 : 277 - 293
  • [5] ELIASHBERG Y., 1991, P S PURE MATH 2, V52, P135
  • [6] Eliashberg Y. M., 1998, U LECT SERIES, V13
  • [7] On symplectic cobordisms
    Etnyre, JB
    Honda, K
    [J]. MATHEMATISCHE ANNALEN, 2002, 323 (01) : 31 - 39
  • [8] ETNYRE JB, 2004, ALGEBR GEOM TOPOL, V3, P73
  • [9] GABAI D, 1983, J DIFFER GEOM, V18, P445
  • [10] GABAI D, 1987, J DIFFER GEOM, V26, P479