Determination of total x-ray absorption coefficient using non-resonant x-ray emission

被引:54
作者
Achkar, A. J. [1 ]
Regier, T. Z. [2 ]
Monkman, E. J. [3 ]
Shen, K. M. [3 ,4 ]
Hawthorn, D. G. [1 ]
机构
[1] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[2] Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 0X4, Canada
[3] Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[4] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
FINE-STRUCTURE; SCATTERING; SPECTRA; TABULATION; YIELD; PHOTOABSORPTION; TRANSMISSION; ATTENUATION;
D O I
10.1038/srep00182
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, mu(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from mu(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine mu(E) in absolute units with no free parameters by scaling to mu(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining mu(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively.
引用
收藏
页数:7
相关论文
共 24 条
[1]   SOFT-X-RAY-ABSORPTION STUDIES OF THE LOCATION OF EXTRA CHARGES INDUCED BY SUBSTITUTION IN CONTROLLED-VALENCE MATERIALS [J].
ABBATE, M ;
DEGROOT, FMF ;
FUGGLE, JC ;
FUJIMORI, A ;
TOKURA, Y ;
FUJISHIMA, Y ;
STREBEL, O ;
DOMKE, M ;
KAINDL, G ;
VANELP, J ;
THOLE, BT ;
SAWATZKY, GA ;
SACCHI, M ;
TSUDA, N .
PHYSICAL REVIEW B, 1991, 44 (11) :5419-5422
[2]   Bulk sensitive x-ray absorption spectroscopy free of self-absorption effects [J].
Achkar, A. J. ;
Regier, T. Z. ;
Wadati, H. ;
Kim, Y. -J. ;
Zhang, H. ;
Hawthorn, D. G. .
PHYSICAL REVIEW B, 2011, 83 (08)
[4]   THEORETICAL FORM-FACTOR, ATTENUATION AND SCATTERING TABULATION FOR Z=1-92 FROM E=1-10 EV TO E=0.4-1.0 MEV [J].
CHANTLER, CT .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1995, 24 (01) :71-591
[5]  
de Groot F, 2008, ADV CONDENS MAT SCI, V6, P1
[6]   In-situ Scanning Transmission X-Ray Microscopy of Catalytic Solids and Related Nanomaterials [J].
de Groot, Frank M. F. ;
de Smit, Emiel ;
van Schooneveld, Matti M. ;
Aramburo, Luis R. ;
Weckhuysen, Bert M. .
CHEMPHYSCHEM, 2010, 11 (05) :951-962
[7]   FLUORESCENCE YIELD DETECTION - WHY IT DOES NOT MEASURE THE X-RAY-ABSORPTION CROSS-SECTION [J].
DEGROOT, FMF ;
ARRIO, MA ;
SAINCTAVIT, P ;
CARTIER, C ;
CHEN, CT .
SOLID STATE COMMUNICATIONS, 1994, 92 (12) :991-995
[8]   DETERMINATION OF ABSORPTION-COEFFICIENTS FOR CONCENTRATED SAMPLES BY FLUORESCENCE DETECTION [J].
EISEBITT, S ;
BOSKE, T ;
RUBENSSON, JE ;
EBERHARDT, W .
PHYSICAL REVIEW B, 1993, 47 (21) :14103-14109
[9]   CLOSE SIMILARITY BETWEEN PHOTOELECTRIC YIELD AND PHOTOABSORPTION SPECTRA IN SOFT-X-RAY RANGE [J].
GUDAT, W ;
KUNZ, C .
PHYSICAL REVIEW LETTERS, 1972, 29 (03) :169-&
[10]   X-RAY INTERACTIONS - PHOTOABSORPTION, SCATTERING, TRANSMISSION, AND REFLECTION AT E=50-30,000 EV, Z=1-92 [J].
HENKE, BL ;
GULLIKSON, EM ;
DAVIS, JC .
ATOMIC DATA AND NUCLEAR DATA TABLES, 1993, 54 (02) :181-342