Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification

被引:160
作者
Chen, Xiao [1 ,2 ,3 ]
Wang, Yutong [1 ,2 ]
Ma, Nan [4 ,5 ]
Tian, Jing [1 ,2 ]
Shao, Yurou [1 ,2 ]
Zhu, Bo [1 ,2 ,3 ]
Wong, Yin Kwan [4 ,5 ,6 ]
Liang, Zhen [6 ]
Zou, Chang [6 ]
Wang, Jigang [4 ,5 ,6 ,7 ]
机构
[1] Nanjing Univ Chinese Med, Sch Med & Holist Integrat Med, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Coll Pharm, Nanjing 210023, Peoples R China
[3] China Pharmaceut Univ, Sch Biopharm, Nanjing 210009, Peoples R China
[4] China Acad Chinese Med Sci, Artemisinin Res Ctr, Beijing 100700, Peoples R China
[5] China Acad Chinese Med Sci, Inst Chinese Mat Med, Beijing 100700, Peoples R China
[6] Jinan Univ, Southern Univ Sci & Technol, Clin Med Coll 2, Affiliated Hosp 1,Shenzhen Peoples Hosp, Shenzhen 518020, Peoples R China
[7] Guangxi Med Univ, Sch Publ Hlth, Dept Toxicol, Nanning 530021, Peoples R China
基金
中国国家自然科学基金;
关键词
POTENTIAL CELLULAR TARGETS; LABEL-FREE QUANTIFICATION; THERMAL SHIFT ASSAY; MASS-SPECTROMETRY; SMALL MOLECULES; SHOTGUN PROTEOMICS; ANTICANCER AGENT; BINDING-SITE; CANCER-CELLS; S.-AUREUS;
D O I
10.1038/s41392-020-0186-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Natural products are an important source of new drugs for the treatment of various diseases. However, developing natural product-based new medicines through random moiety modification is a lengthy and costly process, due in part to the difficulties associated with comprehensively understanding the mechanism of action and the side effects. Identifying the protein targets of natural products is an effective strategy, but most medicines interact with multiple protein targets, which complicate this process. In recent years, an increasing number of researchers have begun to screen the target proteins of natural products with chemical proteomics approaches, which can provide a more comprehensive array of the protein targets of active small molecules in an unbiased manner. Typically, chemical proteomics experiments for target identification consist of two key steps: (1) chemical probe design and synthesis and (2) target fishing and identification. In recent decades, five different types of chemical proteomic probes and their respective target fishing methods have been developed to screen targets of molecules with different structures, and a variety of protein identification approaches have been invented. Presently, we will classify these chemical proteomics approaches, the application scopes and characteristics of the different types of chemical probes, the different protein identification methods, and the advantages and disadvantages of these strategies.
引用
收藏
页数:13
相关论文
共 138 条
[1]  
Abarca M., 1994, Junta Directiva, V60, P31
[2]   Microarrays as validation strategies in clinical samples: Tissue and protein microarrays [J].
Aguilar-Mahecha, Adriana ;
Hassan, Saima ;
Ferrario, Cristiano ;
Basik, Mark .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (03) :311-326
[3]   Chemical proteomics reveals new targets of cysteine sulfinic acid reductase [J].
Akter, Salma ;
Fu, Ling ;
Jung, Youngeun ;
Lo Conte, Mauro ;
Lawson, J. Reed ;
Lowther, W. Todd ;
Sun, Rui ;
Liu, Keke ;
Yang, Jing ;
Carroll, Kate S. .
NATURE CHEMICAL BIOLOGY, 2018, 14 (11) :995-+
[4]   A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen [J].
Asara, John M. ;
Christofk, Heather R. ;
Freimark, Lisa M. ;
Cantley, Lewis C. .
PROTEOMICS, 2008, 8 (05) :994-999
[5]   Revealing promiscuous drug-target interactions by chemical proteomics [J].
Bantscheff, Marcus ;
Scholten, Arjen ;
Heck, Albert J. R. .
DRUG DISCOVERY TODAY, 2009, 14 (21-22) :1021-1029
[6]   Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer [J].
Bar-Peled, Liron ;
Kemper, Esther K. ;
Suciu, Radu M. ;
Vinogradova, Ekaterina V. ;
Backus, Keriann M. ;
Horning, Benjamin D. ;
Paul, Thomas A. ;
Ichu, Taka-Aki ;
Svensson, Robert U. ;
Olucha, Jose ;
Chang, Max W. ;
Kok, Bernard P. ;
Zhu, Zhou ;
Ihle, Nathan T. ;
Dix, Melissa M. ;
Jiang, Ping ;
Hayward, Matthew M. ;
Saez, Enrique ;
Shaw, Reuben J. ;
Cravatt, Benjamin F. .
CELL, 2017, 171 (03) :696-+
[7]   The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin [J].
Bargagna-Mohan, Paola ;
Hamza, Adel ;
Kim, Yang-eon ;
Ho, Yik Khuan ;
Mor-Valknin, Nirit ;
Wendschlag, Nicole ;
Li, Junjun ;
Evans, Robert M. ;
Markovitz, David M. ;
Zhan, Chang-Guo ;
Kim, Kyung Bo ;
Mohan, Royce .
CHEMISTRY & BIOLOGY, 2007, 14 (06) :623-634
[8]   Copper-free click chemistry for dynamic in vivo imaging [J].
Baskin, Jeremy M. ;
Prescher, Jennifer A. ;
Laughlin, Scott T. ;
Agard, Nicholas J. ;
Chang, Pamela V. ;
Miller, Isaac A. ;
Lo, Anderson ;
Codelli, Julian A. ;
Bertozzi, Carolyn R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (43) :16793-16797
[9]   Target profiling of 4-hydroxyderricin in S. aureus reveals seryl-tRNA synthetase binding and inhibition by covalent modification [J].
Battenberg, Oliver A. ;
Yang, Yinliang ;
Verhelst, Steven H. L. ;
Sieber, Stephan A. .
MOLECULAR BIOSYSTEMS, 2013, 9 (03) :343-351
[10]   The therapeutic potential of resveratrol: a review of clinical trials [J].
Berman, Adi Y. ;
Motechin, Rachel A. ;
Wiesenfeld, Maia Y. ;
Holz, Marina K. .
NPJ PRECISION ONCOLOGY, 2017, 1