New bounds for the acyclic chromatic index

被引:7
作者
Bernshteyn, Anton [1 ]
机构
[1] Univ Illinois, Champaign, IL USA
关键词
Acyclic edge coloring; Lovasz local lemma; Local cut lemma;
D O I
10.1016/j.disc.2016.05.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge coloring of a graph G is called an acyclic edge coloring if it is proper and every cycle in G contains edges of at least three different colors. The least number of colors needed for an acyclic edge coloring of G is called the acyclic chromatic index of G and is denoted by a'(G). Fiamcik (1978) and independently Alon, Sudakov, and Zaks (2001) conjectured that a'(G) <= Delta(G) + 2, where A(G) denotes the maximum degree of G. The best known general bound is a'(G) <= 4(Delta(G) - 1) due to Esperet and Parreau (2013). We apply a generalization of the Lovasz Local Lemma to show that if G contains no copy of a given bipartite graph H, then a'(G) <= 3 Delta 4(G) + o(Delta(G)). Moreover, for.every epsilon > 0, there exists a constant c such that if g(G) >= c, then a'(G) <= (2 + epsilon) Delta (G) + o(Delta(G)), where g (G) denotes the girth of G. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2543 / 2552
页数:10
相关论文
共 15 条
  • [1] Acyclic edge colorings of graphs
    Alon, N
    Sudakov, B
    Zaks, A
    [J]. JOURNAL OF GRAPH THEORY, 2001, 37 (03) : 157 - 167
  • [2] ACYCLIC COLORING OF GRAPHS
    ALON, N
    MCDIARMID, C
    REED, B
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) : 277 - 288
  • [3] Bernshteyn A., ARXIV160105481
  • [4] Bissacot R, 2011, COMB PROBAB COMPUT, V20, P709, DOI [10.1017/S096354831100025, 10.1017/S0963548311000253]
  • [5] Cai X.S., ARXIV14113047
  • [6] Acyclic edge-coloring using entropy compression
    Esperet, Louis
    Parreau, Aline
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (06) : 1019 - 1027
  • [7] Fiamcik J., 1978, Math Slovaca, V28, P139
  • [8] ACYCLIC COLORINGS OF PLANAR GRAPHS
    GRUNBAUM, B
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) : 390 - 408
  • [9] Kahn J, 2000, RANDOM STRUCT ALGOR, V17, P117, DOI 10.1002/1098-2418(200009)17:2<117::AID-RSA3>3.0.CO
  • [10] 2-9