Central configurations of the symmetric restricted 4-body problem

被引:6
作者
Alvarez-Ramírez, M [1 ]
Delgado, J [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
关键词
D O I
10.1023/B:CELE.0000006766.98587.d1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the symmetric planar (3+1)- body problem with finite masses m(1) = m(2) = 1, m(3) = mu and one small mass m(4) = epsilon. We count the number of central configurations of the restricted case epsilon = 0, where the finite masses remain in an equilateral triangle configuration, by means of the bifurcation diagram with mu as the parameter. The diagram shows a folding bifurcation at a value consistent with that found numerically by Meyer [9] and it is shown that for small epsilon > 0 the bifurcation diagram persists, thus leading to an exact count of central configurations and a folding bifurcation for small m(4) > 0.
引用
收藏
页码:371 / 381
页数:11
相关论文
共 19 条
[1]  
Albouy A., 2002, CONT MATH, V292, P1, DOI DOI 10.1090/CONM/292/04914
[2]  
Albouy A., 1996, CONT MATH, P131, DOI [DOI 10.1090/CONM/198/02494, 10.1090/conm/198/02494]
[3]  
[Anonymous], 1941, PRINCETON MATH SERIE
[4]   CENTRAL CONFIGURATIONS OF 4 BODIES WITH ONE INFERIOR MASS [J].
ARENSTORF, RF .
CELESTIAL MECHANICS, 1982, 28 (1-2) :9-15
[5]  
Hagihara Y., 1970, DYNAMICAL PRINCIPLES, VI
[6]  
Lindow M., 1923, ASTRON NACHR, V220, P371
[7]  
Lindow M., 1922, ASTRON NACHR, V216, P389
[8]  
MCCORD CK, 1998, MEM AM MATH SOC, V132
[9]   TRIPLE COLLISION IN COLLINEAR 3-BODY PROBLEM [J].
MCGEHEE, R .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :191-227
[10]  
Meyer K.R., 1990, MATH NONLINEAR SCI, V108, P93