Magnetic-field-induced oscillation of multipartite nonlocality in spin ladders

被引:15
作者
Cheng, Hong-Guang [1 ]
Li, Meng [1 ]
Wu, Yu-Ying [1 ]
Wang, Mei [1 ]
Zhang, Duo [1 ]
Bao, Jia [2 ]
Guo, Bin [2 ]
Sun, Zhao-Yu [1 ]
机构
[1] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Peoples R China
[2] Wuhan Univ Technol, Dept Phys, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM PHASE-TRANSITIONS; ENTANGLEMENT; STATES;
D O I
10.1103/PhysRevA.101.052116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Spin-1/2 two-leg ladder models under a magnetic field have a well-known phase diagram. In this paper, we use multipartite nonlocality (a measure of multipartite quantum correlations) to characterize the quantum correlations in the ladder models at zero temperature. Both finite-size and infinite-size ladders are considered. We investigate the global nonlocality S-g = S(vertical bar Psi(g)>), which describes quantum correlations of the ground states vertical bar Psi(g)> of the entire lattices, and the partial nonlocality S-p = S((rho) over cap (n)), which describes quantum correlations of the reduced states (rho) over bar (n) of some sublattices in the ladders. We find that as the magnetic field lambda increases, the global nonlocality S-g presents a single-peak curve. Moreover, the logarithmic measure ln S-g changes dramatically at the two critical fields lambda(c1) and lambda(c2) of the models and thus signals the quantum phase transitions in the models. For the partial nonlocality S-p, in the regions lambda(c1) < lambda < lambda(c2), we observe that the S-p(lambda) curve shows an oscillation. Numerical results reveal that the underling mechanism is the "major component transitions" in the reduced states (rho) over bar (n) of the sublattices. More importantly, the oscillation of the partial nonlocality S-p is modulated by the single-peak curve of the global nonlocality S-g. The result provides valuable clues about the relation between partial nonlocality and global nonlocality in low-dimensional quantum models.
引用
收藏
页数:8
相关论文
共 58 条
[1]   Measures and applications of quantum correlations [J].
Adesso, Gerardo ;
Bromley, Thomas R. ;
Cianciaruso, Marco .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (47)
[2]   Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems [J].
Altintas, Ferdi ;
Eryigit, Resul .
ANNALS OF PHYSICS, 2012, 327 (12) :3084-3101
[3]   Definitions of multipartite nonlocality [J].
Bancal, Jean-Daniel ;
Barrett, Jonathan ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW A, 2013, 88 (01)
[4]   Detecting Genuine Multipartite Quantum Nonlocality: A Simple Approach and Generalization to Arbitrary Dimensions [J].
Bancal, Jean-Daniel ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Liang, Yeong-Cherng .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[5]   Quantifying Multipartite Nonlocality [J].
Bancal, Jean-Daniel ;
Branciard, Cyril ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[6]   Multipartite nonlocality in the Lipkin-Meshkov-Glick model [J].
Bao, Jia ;
Guo, Bin ;
Cheng, Hong-Guang ;
Zhou, Mu ;
Fu, Jin ;
Deng, Yi-Chen ;
Sun, Zhao-Yu .
PHYSICAL REVIEW A, 2020, 101 (01)
[7]   Nonlocality and entanglement in the XY model [J].
Batle, J. ;
Casas, M. .
PHYSICAL REVIEW A, 2010, 82 (06)
[8]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[9]   Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions [J].
Bayat, Abolfazl .
PHYSICAL REVIEW LETTERS, 2017, 118 (03)
[10]  
Bell J. S., 1964, PHYSICS, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]