Nonequilibrium Quantum Many-Body Rydberg Atom Engine

被引:43
作者
Carollo, Federico [1 ,2 ,3 ]
Gambetta, Filippo M. [2 ,3 ]
Brandner, Kay [2 ,3 ,4 ]
Garrahan, Juan P. [2 ,3 ]
Lesanovsky, Igor [1 ,2 ,3 ]
机构
[1] Unive Tubingen, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany
[2] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[3] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Nottingham NG7 2RD, England
[4] Keio Univ, Dept Phys, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
基金
英国工程与自然科学研究理事会; 奥地利科学基金会; 日本学术振兴会;
关键词
PERIODICALLY DRIVEN; STATISTICAL-MECHANICS; DYNAMICS; CHAOS;
D O I
10.1103/PhysRevLett.124.170602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The standard approach to quantum engines is based on equilibrium systems and on thermodynamic transformations between Gibbs states. However, nonequilibrium quantum systems offer enhanced experimental flexibility in the control of their parameters and, if used as engines, a more direct interpretation of the type of work they deliver. Here we introduce an out-of-equilibrium quantum engine inspired by recent experiments with cold atoms. Our system is connected to a single environment and produces mechanical work from many-body interparticle interactions arising between atoms in highly excited Rydberg states. As such, it is not a heat engine but an isothermal one. We perform many-body simulations to show that this system can produce work. The setup we introduce and investigate represents a promising platform for devising new types of microscopic machines and for exploring quantum effects in thermodynamic processes.
引用
收藏
页数:7
相关论文
共 64 条
[1]   A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems [J].
Abanin, Dmitry ;
De Roeck, Wojciech ;
Ho, Wen Wei ;
Huveneers, Francois .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (03) :809-827
[2]   Theory of many-body localization in periodically driven systems [J].
Abanin, Dmitry A. ;
De Roeck, Wojciech ;
Huveneers, Francois .
ANNALS OF PHYSICS, 2016, 372 :1-11
[3]  
Alicki R., 2018, THERMODYNAMICS QUANT, P1, DOI DOI 10.1007/978-3-319-99046-0_1
[4]   Trapping Rydberg Atoms in an Optical Lattice [J].
Anderson, S. E. ;
Younge, K. C. ;
Raithel, G. .
PHYSICAL REVIEW LETTERS, 2011, 107 (26)
[6]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[7]   Quantum spin chain dissipative mean-field dynamics [J].
Benatti, F. ;
Carollo, F. ;
Floreanini, R. ;
Narnhofer, H. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (32)
[8]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[9]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[10]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964