Collisional Effects on Drift Wave Microturbulence in Tokamak Plasmas

被引:7
作者
Hu, Wei [1 ,2 ,3 ,4 ]
Feng, Hong-Ying [5 ]
Dong, Chao [2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Phys, CAS Key Lab Soft Matter Phys, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] China Three Gorges Univ, Coll Mech & Power Engn, Yichang 443002, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRON MODE TURBULENCE; PARTICLE SIMULATION; ZONAL FLOWS; TRANSPORT; SYSTEMS;
D O I
10.1088/0256-307X/35/10/105201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Collisional effects on the microturbulence, excited by the electrostatic drift-wave instability, are investigated through first-principle large scale gyrokinetic particle simulations using the realistic discharge parameters of the DIII-D Tokamak. In the linear simulations, the growth rates of the drift waves are decreased by the collisions compared to the collisionless simulations in the lower and higher T-e plasmas. In the lower T-e plasma, the collisions can promote the transition of the drift wave regime from the TEM-dominant instability to the ITG-dominant instability. The zonal flows are excited by the microturbulence and work as a modulation mechanism for the microturbulence in the nonlinear simulations. Microturbulence can excite high frequency zonal flows in the collisionless plasmas, which is in agreement with the theoretical work. In the lower T-e plasma, the collisions decrease the microturbulence in the nonlinear saturated stage compared to the collisionless simulations, which are beneficial for the plasma confinement. In the higher T-e plasma, the final saturated microturbulence shows a slight change.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Impurity effects on trapped electron mode in tokamak plasmas [J].
Du, Huarong ;
Wang, Zheng-Xiong ;
Dong, J. Q. .
PHYSICS OF PLASMAS, 2016, 23 (07)
[22]   Comparison of ITG and TEM Microturbulence in DIII-D Tokamak [J].
Hu, Wei ;
Feng, Hong-Ying ;
Zhang, Wen-Lu .
CHINESE PHYSICS LETTERS, 2019, 36 (08)
[23]   Properties of microturbulence in toroidal plasmas with reversed magnetic shear [J].
Deng, Wenjun ;
Lin, Zhihong .
PHYSICS OF PLASMAS, 2009, 16 (10)
[24]   Theoretical and numerical studies of wave-packet propagation in tokamak plasmas [J].
Lu, Z. X. ;
Zonca, F. ;
Cardinali, A. .
PHYSICS OF PLASMAS, 2012, 19 (04)
[25]   Nonlinear excitation of geodesic acoustic mode by drift waves in anisotropic tokamak plasmas with toroidal rotation [J].
Huang, Handi ;
Ren, Haijun ;
Ming, Zhengyang ;
Zhang, Debing .
PHYSICS OF PLASMAS, 2022, 29 (03)
[26]   The response of toroidal drift modes to profile evolution: a model for small-ELMs in tokamak plasmas? [J].
Bokshi, A. ;
Dickinson, D. ;
Roach, C. M. ;
Wilson, H. R. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (07)
[27]   Electromagnetic effects of kinetic geodesic acoustic mode in tokamak plasmas [J].
Wang, Lingfeng ;
Dong, J. Q. ;
Shen, Y. ;
He, H. D. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[28]   Effects of recycling neutral on density shoulder formation in tokamak plasmas [J].
Wu, Xingquan ;
Xu, Guosheng ;
Yan, Ning ;
Chen, Ran ;
Wang, Liang ;
Wan, Baonian .
NUCLEAR FUSION, 2022, 62 (03)
[29]   EFFECTS OF MAGNETIC DRIFTS ON ION TRANSPORT IN TURBULENT TOKAMAK PLASMAS [J].
Croitoru, A. .
ROMANIAN JOURNAL OF PHYSICS, 2018, 63 (9-10)
[30]   Electrostatic fluctuations in collisional plasmas [J].
Rozmus, W. ;
Brantov, A. ;
Fortmann-Grote, C. ;
Bychenkov, V. Yu. ;
Glenzer, S. .
PHYSICAL REVIEW E, 2017, 96 (04)