Applications of controlled electrospinning systems

被引:40
作者
Bellan, Leon M. [1 ]
Craighead, Harold G. [2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
关键词
electrospinning; controlled; nanofibers; nanofabrication; ORIENTED POLYMERIC NANOFIBERS; FABRICATION; FIELD; ENCAPSULATION; MEMBRANES; FIBERS; COMPOSITE; SCAFFOLD; CELLS; MELTS;
D O I
10.1002/pat.1790
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrospinning is a powerful technique that uses an electrically forced fluid jet to form nanofibers from a material dissolved in a solvent. While the complex whipping motion of a typical electrospinning jet results in a nonwoven mat of fibers, there have been many developments aimed at controlling the deposition of an electrospinning jet to form more ordered patterns of nanofibers. Such controlled deposition is desirable as it would provide a low-cost fabrication technique for nanoscale devices such as nanomechanical devices, electronic devices, and light-emitting systems. Nanofibers may also be used as masks or templates to create nanoscale structures in other materials. Other modifications to a standard electrospinning system allow for atypical nanofiber morphologies such as hollow or coaxial nanofibers, side-by-side nanofiber deposition, etc. This review will highlight electrospinning systems modified for controlled or atypical deposition, and will discuss applications of the fibers resulting from such systems. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:304 / 309
页数:6
相关论文
共 80 条
[31]   A scanning tip electrospinning source for deposition of oriented nanofibres [J].
Kameoka, J ;
Orth, R ;
Yang, YN ;
Czaplewski, D ;
Mathers, R ;
Coates, GW ;
Craighead, HG .
NANOTECHNOLOGY, 2003, 14 (10) :1124-1129
[32]   Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds [J].
Kessick, Royal ;
Tepper, Gary .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (01) :205-210
[33]   Novel fabricated matrix via electrospinning for tissue engineering [J].
Khil, MS ;
Bhattarai, SR ;
Kim, HY ;
Kim, SZ ;
Lee, KH .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2005, 72B (01) :117-124
[34]   Reactive electrospinning of cross-linked poly(2-hydroxyethyl methacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions [J].
Kim, SH ;
Nair, S ;
Moore, E .
MACROMOLECULES, 2005, 38 (09) :3719-3723
[35]   Encapsulation of Bacterial Cells in Electrospun Microtubes [J].
Klein, S. ;
Kuhn, J. ;
Avrahami, R. ;
Tarre, S. ;
Beliavski, M. ;
Green, M. ;
Zussman, E. .
BIOMACROMOLECULES, 2009, 10 (07) :1751-1756
[36]   ELECTROSTATIC FIBER SPINNING FROM POLYMER MELTS .1. EXPERIMENTAL-OBSERVATIONS ON FIBER FORMATION AND PROPERTIES [J].
LARRONDO, L ;
MANLEY, RSJ .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1981, 19 (06) :909-920
[37]   ELECTROSTATIC FIBER SPINNING FROM POLYMER MELTS .2. EXAMINATION OF THE FLOW FIELD IN AN ELECTRICALLY DRIVEN JET [J].
LARRONDO, L ;
MANLEY, RSJ .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1981, 19 (06) :921-932
[38]   ELECTROSTATIC FIBER SPINNING FROM POLYMER MELTS .3. ELECTROSTATIC DEFORMATION OF A PENDANT DROP OF POLYMER MELT [J].
LARRONDO, L ;
MANLEY, RSJ .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1981, 19 (06) :933-940
[39]   Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast [J].
Lee, CH ;
Shin, HJ ;
Cho, IH ;
Kang, YM ;
Kim, IA ;
Park, KD ;
Shin, JW .
BIOMATERIALS, 2005, 26 (11) :1261-1270
[40]   Periodic Array of Polyelectrolyte-Gated Organic Transistors from Electrospun Poly(3-hexylthiophene) Nanofibers [J].
Lee, Sung W. ;
Lee, Hyun J. ;
Choi, Ji H. ;
Koh, Won G. ;
Myoung, Jae M. ;
Hur, Jae H. ;
Park, Jong J. ;
Cho, Jeong H. ;
Jeong, Unyong .
NANO LETTERS, 2010, 10 (01) :347-351