Applications of controlled electrospinning systems

被引:40
作者
Bellan, Leon M. [1 ]
Craighead, Harold G. [2 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
关键词
electrospinning; controlled; nanofibers; nanofabrication; ORIENTED POLYMERIC NANOFIBERS; FABRICATION; FIELD; ENCAPSULATION; MEMBRANES; FIBERS; COMPOSITE; SCAFFOLD; CELLS; MELTS;
D O I
10.1002/pat.1790
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Electrospinning is a powerful technique that uses an electrically forced fluid jet to form nanofibers from a material dissolved in a solvent. While the complex whipping motion of a typical electrospinning jet results in a nonwoven mat of fibers, there have been many developments aimed at controlling the deposition of an electrospinning jet to form more ordered patterns of nanofibers. Such controlled deposition is desirable as it would provide a low-cost fabrication technique for nanoscale devices such as nanomechanical devices, electronic devices, and light-emitting systems. Nanofibers may also be used as masks or templates to create nanoscale structures in other materials. Other modifications to a standard electrospinning system allow for atypical nanofiber morphologies such as hollow or coaxial nanofibers, side-by-side nanofiber deposition, etc. This review will highlight electrospinning systems modified for controlled or atypical deposition, and will discuss applications of the fibers resulting from such systems. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:304 / 309
页数:6
相关论文
共 80 条
[1]  
Anzenbacher P, 2009, NAT CHEM, V1, P80, DOI [10.1038/nchem.125, 10.1038/NCHEM.125]
[2]   Nanochannels fabricated in polydimethylsiloxane using sacrificial electrospun polyethylene oxide nanofibers [J].
Bellan, Leon M. ;
Strychalski, Elizabeth A. ;
Craighead, Harold G. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (05) :1728-1731
[3]   Control of an electrospinning jet using electric focusing and jet-steering fields [J].
Bellan, Leon M. ;
Craighead, H. G. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (06) :3179-3183
[4]   Individually resolved DNA molecules stretched and embedded in electrospun polymer nanofibers [J].
Bellan, Leon M. ;
Cross, Joshua D. ;
Strychalski, Elizabeth A. ;
Moran-Mirabal, Jose ;
Craighead, H. G. .
NANO LETTERS, 2006, 6 (11) :2526-2530
[5]   Chip-based microfabricated electrospinning nozzles [J].
Bellan, Leon M. ;
Alpha, Chris ;
Corso, Tom ;
Henion, Jack ;
Craighead, Harold G. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (06) :2539-2542
[6]   Poly (dicyclopentadiene) submicron fibers produced by electrospinning [J].
Bellan, LM ;
Coates, GW ;
Craighead, HG .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (07) :511-515
[7]   Weighing of biomolecules, single cells and single nanoparticles in fluid [J].
Burg, Thomas P. ;
Godin, Michel ;
Knudsen, Scott M. ;
Shen, Wenjiang ;
Carlson, Greg ;
Foster, John S. ;
Babcock, Ken ;
Manalis, Scott R. .
NATURE, 2007, 446 (7139) :1066-1069
[8]   Suspended microchannel resonators for biomolecular detection [J].
Burg, TP ;
Manalis, SR .
APPLIED PHYSICS LETTERS, 2003, 83 (13) :2698-2700
[9]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[10]   Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns [J].
Chang, Chieh ;
Limkrailassiri, Kevin ;
Lin, Liwei .
APPLIED PHYSICS LETTERS, 2008, 93 (12)