Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering

被引:475
作者
Lussier, Felix [1 ,2 ]
Thibault, Vincent [3 ,4 ]
Charron, Benjamin [3 ,4 ]
Wallace, Gregory Q. [3 ,4 ]
Masson, Jean-Francois [3 ,4 ]
机构
[1] Max Planck Inst Med Res, Dept Cellular Biophys, Jahnstr 29, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Biophys Chem, Neuenheimer Feld 253, D-69120 Heidelberg, Germany
[3] Univ Montreal, CQMF, Dept Chim, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, RQMP, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Deep learning; Machine learning; Artificial intelligence; Artificial neural network; Raman; Surface enhanced Raman scattering; SERS; Sensors; NEURAL-NETWORKS; RAPID IDENTIFICATION; SPECTROSCOPIC IDENTIFICATION; SILVER NANOPARTICLE; CLASSIFICATION; CANCER; SERS; CARCINOMA; TRENDS; NASOPHARYNGEAL;
D O I
10.1016/j.trac.2019.115796
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Machine learning is shaping up our lives in many ways. In analytical sciences, machine learning provides an unprecedented opportunity to extract information from complex or big datasets in chromatography, mass spectrometry, NMR, and spectroscopy, among others. This is especially the case in Raman and surface-enhanced Raman scattering (SERS) techniques where vibrational spectra of complex chemical mixtures are acquired as large datasets for the analysis or imaging of chemical systems. The classical linear methods of processing the information no longer suffice and thus machine learning methods for extracting the chemical information from Raman and SERS experiments have been implemented recently. In this review, we will provide a brief overview of the most common machine learning techniques employed in Raman, a guideline for new users to implement machine learning in their data analysis process, and an overview of modern applications of machine learning in Raman and SERS. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 102 条
[1]   Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS) [J].
Ai, Yu-jie ;
Liang, Pei ;
Wu, Yan-xiong ;
Dong, Qian-min ;
Li, Jing-bin ;
Bai, Yang ;
Xu, Bi-Jie ;
Yu, Zhi ;
Ni, Dejiang .
FOOD CHEMISTRY, 2018, 241 :427-433
[2]   Raman spectroscopy based analysis of milk using random forest classification [J].
Amjad, Arslan ;
Ullah, Rahat ;
Khan, Saranjam ;
Bilal, Muhammad ;
Khan, Asifullah .
VIBRATIONAL SPECTROSCOPY, 2018, 99 :124-129
[3]  
[Anonymous], 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
[4]  
[Anonymous], ADV NEURAL INFORM PR
[5]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[6]   Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips [J].
Banaei, Nariman ;
Moshfegh, Javad ;
Mohseni-Kabir, Arman ;
Houghton, Jean Marie ;
Sun, Yubing ;
Kim, Byung .
RSC ADVANCES, 2019, 9 (04) :1859-1868
[7]   Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy [J].
Barmpalexis, P. ;
Karagianni, A. ;
Nikolakakis, I. ;
Kachrimanis, K. .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2018, 158 :214-224
[8]   Tuberculosis determination using SERS and chemometric methods [J].
Botta, Raju ;
Chindaudom, Pongpan ;
Eiamchai, Pitak ;
Horprathum, Mati ;
Limwichean, Saksorn ;
Chananonnawathorn, Chanunthorn ;
Patthanasettakul, Viyapol ;
Kaewseekhao, Benjawan ;
Faksri, Kiatichai ;
Nuntawong, Noppadon .
TUBERCULOSIS, 2018, 108 :195-200
[9]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[10]   Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons [J].
Chen, Yunsheng ;
Zhang, Yixia ;
Pan, Fei ;
Liu, Jie ;
Wang, Kan ;
Zhang, Chunlei ;
Cheng, Shangli ;
Lu, Lungen ;
Zhang, Wei ;
Zhang, Zheng ;
Zhi, Xiao ;
Zhang, Qian ;
Alfranca, Gabriel ;
de la Fuente, Jesus M. ;
Chen, Di ;
Cui, Daxiang .
ACS NANO, 2016, 10 (09) :8169-8179