A multi-omics approach for identifying important pathways and genes in human cancer

被引:13
作者
Frost, H. Robert [1 ]
Amos, Christopher I. [1 ]
机构
[1] Dartmouth Coll, Geisel Sch Med, Dept Biomed Data Sci, Hanover, NH 03755 USA
来源
BMC BIOINFORMATICS | 2018年 / 19卷
基金
美国国家卫生研究院;
关键词
Gene set testing; Pathway analysis; Cancer genomics; Driver mutations; REGRESSION SHRINKAGE; LUNG; KRAS; MET; PROGRESSION; MUTATIONS; DISCOVERY; SELECTION; REVEALS; MODELS;
D O I
10.1186/s12859-018-2476-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundCancer develops when pathways controlling cell survival, cell fate or genome maintenance are disrupted by the somatic alteration of key driver genes. Understanding how pathway disruption is driven by somatic alterations is thus essential for an accurate characterization of cancer biology and identification of therapeutic targets. Unfortunately, current cancer pathway analysis methods fail to fully model the relationship between somatic alterations and pathway activity.ResultsTo address these limitations, we developed a multi-omics method for identifying biologically important pathways and genes in human cancer. Our approach combines single-sample pathway analysis with multi-stage, lasso-penalized regression to find pathways whose gene expression can be explained largely in terms of gene-level somatic alterations in the tumor. Importantly, this method can analyze case-only data sets, does not require information regarding pathway topology and supports personalized pathway analysis using just somatic alteration data for a limited number of cancer-associated genes. The practical effectiveness of this technique is illustrated through an analysis of data from The Cancer Genome Atlas using gene sets from the Molecular Signatures Database.ConclusionsNovel insights into the pathophysiology of human cancer can be obtained from statistical models that predict expression-based pathway activity in terms of non-silent somatic mutations and copy number variation. These models enable the identification of biologically important pathways and genes and support personalized pathway analysis in cases where gene expression data is unavailable.
引用
收藏
页数:14
相关论文
共 52 条
  • [1] Pathway-Driven Discovery of Rare Mutational Impact on Cancer
    Ahn, TaeJin
    Park, Taesung
    [J]. BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [2] DNA replication stress response involving PLK1, CDC6, POLQ, RAD51 and CLASPIN upregulation prognoses the outcome of early/mid-stage non-small cell lung cancer patients
    Allera-Moreau, C.
    Rouquette, I.
    Lepage, B.
    Oumouhou, N.
    Walschaerts, M.
    Leconte, E.
    Schilling, V.
    Gordien, K.
    Brouchet, L.
    Delisle, M. B.
    Mazieres, J.
    Hoffmann, J. S.
    Pasero, P.
    Cazaux, C.
    [J]. ONCOGENESIS, 2012, 1 : e30 - e30
  • [3] [Anonymous], NAT METHODS
  • [4] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [5] Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    Barbie, David A.
    Tamayo, Pablo
    Boehm, Jesse S.
    Kim, So Young
    Moody, Susan E.
    Dunn, Ian F.
    Schinzel, Anna C.
    Sandy, Peter
    Meylan, Etienne
    Scholl, Claudia
    Froehling, Stefan
    Chan, Edmond M.
    Sos, Martin L.
    Michel, Kathrin
    Mermel, Craig
    Silver, Serena J.
    Weir, Barbara A.
    Reiling, Jan H.
    Sheng, Qing
    Gupta, Piyush B.
    Wadlow, Raymond C.
    Le, Hanh
    Hoersch, Sebastian
    Wittner, Ben S.
    Ramaswamy, Sridhar
    Livingston, David M.
    Sabatini, David M.
    Meyerson, Matthew
    Thomas, Roman K.
    Lander, Eric S.
    Mesirov, Jill P.
    Root, David E.
    Gilliland, D. Gary
    Jacks, Tyler
    Hahn, William C.
    [J]. NATURE, 2009, 462 (7269) : 108 - U122
  • [6] DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
    Bashashati, Ali
    Haffari, Gholamreza
    Ding, Jiarui
    Ha, Gavin
    Lui, Kenneth
    Rosner, Jamie
    Huntsman, David G.
    Caldas, Carlos
    Aparicio, Samuel A.
    Shah, Sohrab P.
    [J]. GENOME BIOLOGY, 2012, 13 (12): : R124
  • [7] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [8] Advances in computational approaches for prioritizing driver mutations and significantly mutated genes in cancer genomes
    Cheng, Feixiong
    Zhao, Junfei
    Zhao, Zhongming
    [J]. BRIEFINGS IN BIOINFORMATICS, 2016, 17 (04) : 642 - 656
  • [9] Croft D, 2014, NUCLEIC ACIDS RES, V42, pD472, DOI [10.1093/nar/gkt1102, 10.1093/nar/gkz1031]
  • [10] Systematic analysis of somatic mutations impacting gene expression in 12 tumour types
    Ding, Jiarui
    McConechy, Melissa K.
    Horlings, Hugo M.
    Ha, Gavin
    Chan, Fong Chun
    Funnell, Tyler
    Mullaly, Sarah C.
    Reimand, Jueri
    Bashashati, Ali
    Bader, Gary D.
    Huntsman, David
    Aparicio, Samuel
    Condon, Anne
    Shah, Sohrab P.
    [J]. NATURE COMMUNICATIONS, 2015, 6