CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays

被引:18
作者
Barber, Karl W. [1 ,2 ]
Shrock, Ellen [1 ,2 ]
Elledge, Stephen J. [1 ,2 ]
机构
[1] Brigham & Womens Hosp, Howard Hughes Med Inst, Div Genet, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
SEQUENCE LOGOS; PHAGE DISPLAY; SPECIFICITY; REPRESSION; SCALE;
D O I
10.1016/j.molcel.2021.07.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-inspired systems have been extensively developed for applications in genome editing and nucleic acid detection. Here, we introduce a CRISPR-based peptide display technology to facilitate customized, high-throughput in vitro protein interaction studies. We show that bespoke peptide libraries fused to catalytically inactive Cas9 (dCas9) and barcoded with unique single guide RNA (sgRNA) molecules self-assemble from a single mixed pool to programmable positions on a DNA microarray surface for rapid, multiplexed binding assays. We develop dCas9-displayed saturation mutagenesis libraries to characterize antibody-epitope binding for a commercial anti-FLAG monoclonal antibody and human serum antibodies. We also show that our platform can be used for viral epitope mapping and exhibits promise as a multiplexed diagnostics tool. Our CRISPR-based peptide display platform and the principles of complex library self-assembly using dCas9 could be adapted for rapid interrogation of varied customized protein libraries or biological materials assembly using DNA scaffolding.
引用
收藏
页码:3650 / +
页数:15
相关论文
共 45 条
[21]   Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method) [J].
He, MY ;
Taussig, MJ .
NUCLEIC ACIDS RESEARCH, 2001, 29 (15)
[22]   Vienna RNA secondary structure server [J].
Hofacker, IL .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3429-3431
[23]   DNA targeting specificity of RNA-guided Cas9 nucleases [J].
Hsu, Patrick D. ;
Scott, David A. ;
Weinstein, Joshua A. ;
Ran, F. Ann ;
Konermann, Silvana ;
Agarwala, Vineeta ;
Li, Yinqing ;
Fine, Eli J. ;
Wu, Xuebing ;
Shalem, Ophir ;
Cradick, Thomas J. ;
Marraffini, Luciano A. ;
Bao, Gang ;
Zhang, Feng .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :827-+
[24]   CRISPR-Cas9 Structures and Mechanisms [J].
Jiang, Fuguo ;
Doudna, Jennifer A. .
ANNUAL REVIEW OF BIOPHYSICS, VOL 46, 2017, 46 :505-529
[25]   Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips [J].
Kosuri, Sriram ;
Eroshenko, Nikolai ;
LeProust, Emily M. ;
Super, Michael ;
Way, Jeffrey ;
Li, Jin Billy ;
Church, George M. .
NATURE BIOTECHNOLOGY, 2010, 28 (12) :1295-U108
[26]   Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [J].
Langmead, Ben ;
Trapnell, Cole ;
Pop, Mihai ;
Salzberg, Steven L. .
GENOME BIOLOGY, 2009, 10 (03)
[27]   Large-Scale, Quantitative Protein Assays on a High-Throughput DNA Sequencing Chip [J].
Layton, Curtis J. ;
McMahon, Peter L. ;
Greenleaf, William J. .
MOLECULAR CELL, 2019, 73 (05) :1075-+
[28]   Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process [J].
LeProust, Emily M. ;
Peck, Bill J. ;
Spirin, Konstantin ;
McCuen, Heather Brummel ;
Moore, Bridget ;
Namsaraev, Eugeni ;
Caruthers, Marvin H. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (08) :2522-2540
[29]  
Liu Lihong, 2020, bioRxiv, DOI 10.1101/2020.06.17.153486
[30]   RNA-Guided Human Genome Engineering via Cas9 [J].
Mali, Prashant ;
Yang, Luhan ;
Esvelt, Kevin M. ;
Aach, John ;
Guell, Marc ;
DiCarlo, James E. ;
Norville, Julie E. ;
Church, George M. .
SCIENCE, 2013, 339 (6121) :823-826