ABOUT PLANE PERIODIC WAVES OF THE NONLINEAR SCHRODINGER EQUATIONS

被引:5
作者
Audiard, Corentin [1 ]
Miguel Rodrigues, L. [2 ,3 ]
机构
[1] Sorbonne Univ, Univ Paris, Lab Jacques Louis Lions LJLL, CNRS, F-75005 Paris, France
[2] Univ Rennes, F-35000 Rennes, France
[3] IUF, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2022年 / 150卷 / 01期
关键词
Schrodinger equations; periodic traveling waves; spectral stability; orbital stability; abbreviated action integral; harmonic limit; soliton asymptotics; modulation systems; Hamiltonian dynamics; VISCOUS CONSERVATION-LAWS; MODULATIONAL INSTABILITY; TRANSVERSE INSTABILITY; SPECTRAL STABILITY; HAMILTONIAN PDES; TRAVELING-WAVES; DIFFUSION WAVES; SOLITARY WAVES; WAVELENGTH;
D O I
10.24033/bsmf.2846
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present contribution contains a quite extensive theory for the stability analysis of plane periodic waves of general Schrodinger equations. On the one hand, we put the one-dimensional theory, or in other words the stability theory for longitudinal perturbations, on par with the one available for systems of Korteweg type, including results on coperiodic spectral instability, nonlinear coperiodic orbital stability, sideband spectral instability and linearized large-time dynamics in relation with modulation theory, and resolutions of all the involved assumptions in both the small-amplitude and large-period regimes. On the other hand, we provide extensions of the spectral part of the latter to the multidimensional context. Notably, we provide suitable multidimensional modulation formal asymptotics, validate those at the spectral level, and use them to prove that waves are always spectrally unstable in both the small-amplitude and the large-period regimes.
引用
收藏
页码:111 / 207
页数:97
相关论文
共 58 条
[1]  
[Anonymous], 2015, JOURNEES EQUATIONS D, P1
[2]  
[Anonymous], 1999, Nonlinear Schrodinger Equations: Self-Focusing Instability and Wave Collapse
[3]  
[Anonymous], 2015, Introduction to Nonlinear Dispersive Equations
[4]   Note on the stability of viscous roll waves [J].
Barker, Blake ;
Johnson, Mathew A. ;
Noble, Pascal ;
Rodrigues, Luis Miguel ;
Zumbrun, Kevin .
COMPTES RENDUS MECANIQUE, 2017, 345 (02) :125-129
[5]   Stability of Viscous St. Venant Roll Waves: From Onset to Infinite Froude Number Limit [J].
Barker, Blake ;
Johnson, Mathew A. ;
Noble, Pascal ;
Rodrigues, L. Miguel ;
Zumbrun, Kevin .
JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) :285-342
[6]   Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow [J].
Barker, Blake .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (08) :2950-2983
[7]   Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation [J].
Barker, Blake ;
Johnson, Mathew A. ;
Noble, Pascal ;
Rodrigues, L. Miguel ;
Zumbrun, Kevin .
PHYSICA D-NONLINEAR PHENOMENA, 2013, 258 :11-46
[9]   IMPULSE, FLOW FORCE AND VARIATIONAL-PRINCIPLES [J].
BENJAMIN, TB .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) :3-68
[10]   Stability of Periodic Waves in Hamiltonian PDEs of either Long Wavelength or Small Amplitude [J].
Benzoni-Gavage, S. ;
Mietka, C. ;
Rodrigues, L. M. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (02) :545-619