Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice

被引:113
作者
Diederichs, Gabriel Wilhelm [1 ]
Mandegari, Mohsen Ali [1 ]
Farzad, Somayeh [1 ]
Gorgens, Johann F. [1 ]
机构
[1] Univ Stellenbosch, Dept Proc Engn, Private Bag X1, ZA-7602 Matieland, South Africa
关键词
Techno-economic comparison; Renewable jet fuel; Ethanol intermediate; Thermochemical; Biochemical; Hybrid; BIOMASS; ETHANOL; METHANOL; BAGASSE;
D O I
10.1016/j.biortech.2016.05.090
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus (R) simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes-the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes-reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:331 / 339
页数:9
相关论文
共 34 条
[1]   Life Cycle Assessment of Potential Biojet Fuel Production in the United States [J].
Agusdinata, Datu B. ;
Zhao, Fu ;
Ileleji, Klein ;
DeLaurentis, Dan .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (21) :9133-9143
[2]   Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass [J].
Alzate, C. A. Cardona ;
Toro, O. J. Sanchez .
ENERGY, 2006, 31 (13) :2447-2459
[3]  
[Anonymous], INT J CHEM ENG APPL, DOI DOI 10.7763/IJCEA.2010.V1.48
[4]  
[Anonymous], 2014, REP ALT FUELS
[5]   Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass [J].
Bond, Jesse Q. ;
Upadhye, Aniruddha A. ;
Olcay, Hakan ;
Tompsett, Geoffrey A. ;
Jae, Jungho ;
Xing, Rong ;
Alonso, David Martin ;
Wang, Dong ;
Zhang, Taiying ;
Kumar, Rajeev ;
Foster, Andrew ;
Sen, S. Murat ;
Maravelias, Christos T. ;
Malina, Robert ;
Barrett, Steven R. H. ;
Lobo, Raul ;
Wyman, Charles E. ;
Dumesic, James A. ;
Huber, George W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1500-1523
[6]   SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse [J].
Carrasco, C. ;
Baudel, H. M. ;
Sendelius, J. ;
Modig, T. ;
Roslander, C. ;
Galbe, M. ;
Hahn-Hagerdal, B. ;
Zacchi, G. ;
Liden, G. .
ENZYME AND MICROBIAL TECHNOLOGY, 2010, 46 (02) :64-73
[7]  
Colket M., 2016, 54 AIAA AER SCI M, P0177
[8]   Commercial Biomass Syngas Fermentation [J].
Daniell, James ;
Koepke, Michael ;
Simpson, Sean Dennis .
ENERGIES, 2012, 5 (12) :5372-5417
[9]   Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process [J].
Dias, Marina O. S. ;
Ensinas, Adriano V. ;
Nebra, Silvia A. ;
Maciel Filho, Rubens ;
Rossell, Carlos E. V. ;
Wolf Maciel, Maria Regina .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2009, 87 (9A) :1206-1216
[10]  
Dutta A., 2011, PROCESS DESIGN EC CO, DOI [10.2172/1015885, DOI 10.2172/1015885]