Asymptotic stability of solitons for mKdV

被引:42
作者
Germain, Pierre [1 ]
Pusateri, Fabio [2 ]
Rousset, Frederic [3 ,4 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Princeton Univ, Dept Math, Washington Rd, Princeton, NJ 08540 USA
[3] Univ Paris 11, Lab Math Orsay, UMR 8628, F-91405 Orsay, France
[4] Inst Univ Prance, Paris, France
基金
美国国家科学基金会;
关键词
mKdV; Modified scattering; Asymptotic stability; Solitons; GLOBAL-SOLUTIONS; SOLITARY WAVES; LARGE TIME; NONLINEAR SCHRODINGER; INVERSE SCATTERING; GKDV EQUATIONS; WELL-POSEDNESS; KDV; OPERATOR; RANGE;
D O I
10.1016/j.aim.2016.04.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a full asymptotic stability result for solitary wave solutions of the mKdV equation. We consider small perturbations of solitary waves with polynomial decay at infinity and prove that solutions of the Cauchy problem evolving from such data tend uniformly, on the real line, to another solitary wave as time goes to infinity. We describe precisely the asymptotes of the perturbation behind the solitary wave showing that it satisfies a nonlinearly modified scattering behavior. This latter part of our result relies on a precise study of the asymptotic behavior of small solutions of the mKdV equation. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:272 / 330
页数:59
相关论文
共 50 条
[1]  
Ablowitz M. J., 2011, Cambridge Texts in Applied Mathematics
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
[Anonymous], 2006, CBMS REGIONAL C SERI, DOI DOI 10.1090/EBMS/106
[4]  
[Anonymous], ARXIV11124657
[5]  
[Anonymous], ARXIV14047581
[6]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[7]  
Christ M, 2003, AM J MATH, V125, P1235
[8]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749
[9]   Scaling-sharp dispersive estimates for the Korteweg-de Vries group [J].
Cote, Raphael ;
Vega, Luis .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (15-16) :845-848
[10]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368