Physics-Informed Deep Learning for Traffic State Estimation: A Hybrid Paradigm Informed By Second-Order Traffic Models

被引:0
|
作者
Shi, Rongye [1 ]
Mo, Zhaobin [1 ]
Di, Xuan [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
来源
THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2021年 / 35卷
关键词
WAVES; FLOW;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic state estimation (TSE) reconstructs the traffic variables (e.g., density or average velocity) on road segments using partially observed data, which is important for traffic managements. Traditional TSE approaches mainly bifurcate into two categories: model-driven and data-driven, and each of them has shortcomings. To mitigate these limitations, hybrid TSE methods, which combine both model-driven and data-driven, are becoming a promising solution. This paper introduces a hybrid framework, physics-informed deep learning (PIDL), to combine second-order traffic flow models and neural networks to solve the TSE problem. PIDL can encode traffic flow models into deep neural networks to regularize the learning process to achieve improved data efficiency and estimation accuracy. We focus on highway TSE with observed data from loop detectors and probe vehicles, using both density and average velocity as the traffic variables. With numerical examples, we show the use of PIDL to solve a popular second-order traffic flow model, i.e., a Greenshields-based Aw-Rascle-Zhang (ARZ) model, and discover the model parameters. We then evaluate the PIDL-based TSE method using the Next Generation SIMulation (NGSIM) dataset. Experimental results demonstrate the proposed PIDL-based approach to outperform advanced baseline methods in terms of data efficiency and estimation accuracy.
引用
收藏
页码:540 / 547
页数:8
相关论文
共 50 条
  • [21] Physics-informed deep learning of rate-and-state fault friction
    Rucker, Cody
    Erickson, Brittany A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [22] Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning
    Tian, Jinpeng
    Xiong, Rui
    Lu, Jiahuan
    Chen, Cheng
    Shen, Weixiang
    ENERGY STORAGE MATERIALS, 2022, 50 : 718 - 729
  • [23] Physics-Informed Neural Networks for Satellite State Estimation
    Varey, Jacob
    Ruprecht, Jessica D.
    Tierney, Michael
    Sullenberger, Ryan
    2024 IEEE AEROSPACE CONFERENCE, 2024,
  • [24] Multi-End Physics-Informed Deep Learning for Seismic Response Estimation
    Ni, Peng
    Sun, Limin
    Yang, Jipeng
    Li, Yixian
    SENSORS, 2022, 22 (10)
  • [25] Physics-Informed Deep Learning for Tool Wear Monitoring
    Zhu, Kunpeng
    Guo, Hao
    Li, Si
    Lin, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 524 - 533
  • [26] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [27] Physics-informed deep learning for fringe pattern analysis
    Wei Yin
    Yuxuan Che
    Xinsheng Li
    Mingyu Li
    Yan Hu
    Shijie Feng
    Edmund Y.Lam
    Qian Chen
    Chao Zuo
    Opto-Electronic Advances, 2024, 7 (01) : 7 - 19
  • [28] Emergent physics-informed design of deep learning for microscopy
    Wijesinghe, Philip
    Dholakia, Kishan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [29] Physics-informed deep learning for incompressible laminar flows
    Chengping Rao
    Hao Sun
    Yang Liu
    Theoretical & Applied Mechanics Letters, 2020, (03) : 207 - 212
  • [30] Physics-informed deep learning for fringe pattern analysis
    Yin, Wei
    Che, Yuxuan
    Li, Xinsheng
    Li, Mingyu
    Hu, Yan
    Feng, Shijie
    Lam, Edmund Y.
    Chen, Qian
    Zuo, Chao
    OPTO-ELECTRONIC ADVANCES, 2024, 7 (01)