Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory

被引:14
作者
Oost, Jacob [1 ,2 ]
Mukohyama, Shinji [3 ,4 ]
Wang, Anzhong [1 ,5 ]
机构
[1] Baylor Univ, GCAP CASPER, Phys Dept, Waco, TX 76798 USA
[2] Odyssey Space Res, 1120 NASA Pkwy, Houston, TX 77058 USA
[3] Kyoto Univ, Yukawa Inst Theoret Phys, Ctr Gravitat Phys, Kyoto 6068502, Japan
[4] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Inst Adv Study, Kashiwa, Chiba 2778583, Japan
[5] Zhejiang Univ Technol, Inst Theoret Phys & Cosmol, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金; 日本学术振兴会;
关键词
Einstein-aether theory; spherical symmetry; exact solution; singularities; black holes; cosmological models; BLACK-HOLES;
D O I
10.3390/universe7080272
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painleve-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions characterized by a single parameter c14 in closed forms, which satisfies all the current observational constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the decoupling limit (c14=0). However, as long as c14 not equal 0, a marginally trapped throat with a finite non-zero radius always exists, and on one side of it the spacetime is asymptotically flat, while on the other side the spacetime becomes singular within a finite proper distance from the throat, although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become infinitely large.
引用
收藏
页数:24
相关论文
共 69 条
[1]   GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (16)
[2]   Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. .
ASTROPHYSICAL JOURNAL LETTERS, 2017, 848 (02)
[3]   Orbital mechanics and quasiperiodic oscillation resonances of black holes in Einstein-AEther theory [J].
Azreg-Ainou, Mustapha ;
Chen, Zihang ;
Deng, Bojun ;
Jamil, Mubasher ;
Zhu, Tao ;
Wu, Qiang ;
Lim, Yen-Kheng .
PHYSICAL REVIEW D, 2020, 102 (04)
[4]   Signals for Lorentz violation in post-Newtonian gravity [J].
Bailey, Quentin G. ;
Kostelecky, V. Alan .
PHYSICAL REVIEW D, 2006, 74 (04)
[5]   Black holes in Einstein-aether and Horava-Lifshitz gravity [J].
Barausse, Enrico ;
Jacobson, Ted ;
Sotiriou, Thomas P. .
PHYSICAL REVIEW D, 2011, 83 (12)
[6]  
Baumgarte T. W., 2010, Numerical Relativity: Solving Einstein's Equations on the Computer
[7]   Towards Thermodynamics of Universal Horizons in Einstein-aether Theory [J].
Berglund, Per ;
Bhattacharyya, Jishnu ;
Mattingly, David .
PHYSICAL REVIEW LETTERS, 2013, 110 (07)
[8]   Mechanics of universal horizons [J].
Berglund, Per ;
Bhattacharyya, Jishnu ;
Mattingly, David .
PHYSICAL REVIEW D, 2012, 85 (12)
[9]   Gravitational collapse and formation of universal horizons in Einstein-aether theory [J].
Bhattacharjee, Madhurima ;
Mukohyama, Shinji ;
Wan, Mew-Bing ;
Wang, Anzhong .
PHYSICAL REVIEW D, 2018, 98 (06)
[10]   Universal horizons in maximally symmetric spaces [J].
Bhattacharyya, Jishnu ;
Mattingly, David .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2014, 23 (13)