Motion estimation and correction for simultaneous PET/MR using SIRF and CIL

被引:8
作者
Brown, Richard [1 ,2 ]
Kolbitsch, Christoph [2 ,3 ]
Delplancke, Claire [4 ]
Papoutsellis, Evangelos [5 ,6 ]
Mayer, Johannes [3 ]
Ovtchinnikov, Evgueni [5 ]
Pasca, Edoardo [5 ]
Neji, Radhouene [2 ,7 ]
Costa-luis, Casper da [2 ]
Gillman, Ashley G. [8 ]
Ehrhardt, Matthias J. [4 ,9 ]
McClelland, Jamie R. [10 ,11 ]
Eiben, Bjoern [10 ,11 ]
Thielemans, Kris [1 ,11 ]
机构
[1] UCL, Inst Nucl Med, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[3] Phys Tech Bundesanstalt, Braunschweig, Germany
[4] Univ Bath, Dept Math Sci, Bath, Avon, England
[5] Rutherford Appleton Lab, STFC, Sci Comp Dept, UKRI, Harwell Campus, Didcot, Oxon, England
[6] Univ Manchester, Henry Royce Inst, Dept Mat, Manchester, Lancs, England
[7] Siemens Healthcare, MR Res Collaborat, Frimley, England
[8] CSIRO, Australian E Hlth Res Ctr, Townsville, Qld, Australia
[9] Univ Bath, Inst Math Innovat, Bath, Avon, England
[10] UCL, Ctr Med Image Comp, London, England
[11] UCL, Dept Med Phys & Biomed Engn, London, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2204期
基金
英国工程与自然科学研究理事会;
关键词
Motion; correction; estimation; PET; MR; SIRF; RESPIRATORY MOTION; IMAGE-RECONSTRUCTION; GENERALIZED RECONSTRUCTION; JOINT ESTIMATION; MRI; MODELS; COMPENSATION; INVERSION; FRAMEWORK; SOFTWARE;
D O I
10.1098/rsta.2020.0208
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Attenuation Correction of the Cerebellum in PET/MR Data
    Kops, Elena Rota
    Alrakh, Heba
    Brambilla, Claudia Regio
    Scheins, Jurgen
    Herzog, Hans
    Shah, N. Jon
    Lerche, Christoph
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2024, 8 (06) : 618 - 631
  • [42] Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR
    Kolbitsch, Christoph
    Neji, Radhouene
    Fenchel, Matthias
    Schuh, Andreas
    Mallia, Andrew
    Marsden, Paul
    Schaeffter, Tobias
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (01)
  • [43] MR-PET head motion correction based on co-registration of multicontrast MR images
    Chen, Zhaolin
    Sforazzini, Francesco
    Baran, Jakub
    Close, Thomas
    Shah, Nadim Jon
    Egan, Gary F.
    HUMAN BRAIN MAPPING, 2021, 42 (13) : 4081 - 4091
  • [44] Quantitative Evaluation of PET Respiratory Motion Correction Using MR Derived Simulated Data
    Polycarpou, Irene
    Tsoumpas, Charalampos
    King, Andrew P.
    Marsden, Paul K.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (06) : 3110 - 3116
  • [45] MRI-Assisted PET Motion Correction for Neurologic Studies in an Integrated MR-PET Scanner
    Catana, Ciprian
    Benner, Thomas
    van der Kouwe, Andre
    Byars, Larry
    Hamm, Michael
    Chonde, Daniel B.
    Michel, Christian J.
    El Fakhri, Georges
    Schmand, Matthias
    Sorensen, Gregory
    JOURNAL OF NUCLEAR MEDICINE, 2011, 52 (01) : 154 - 161
  • [46] Impact of respiratory motion correction on lesion visibility and quantification in thoracic PET/MR imaging
    Gratz, Marcel
    Ruhlmann, Verena
    Umutlu, Lale
    Fenchel, Matthias
    Hong, Inki
    Quick, Harald H.
    PLOS ONE, 2020, 15 (06):
  • [47] Evaluation of attenuation correction in cardiac PET using PET/MR
    Lau, Jeffrey M. C.
    Laforest, R.
    Sotoudeh, H.
    Nie, X.
    Sharma, S.
    McConathy, J.
    Novak, E.
    Priatna, A.
    Gropler, R. J.
    Woodard, P. K.
    JOURNAL OF NUCLEAR CARDIOLOGY, 2017, 24 (03) : 839 - 846
  • [48] Multiparametric imaging with simultaneous MR/PET
    Gatidis, S.
    Schmidt, H.
    Claussen, C. D.
    Schwenzer, N. F.
    RADIOLOGE, 2013, 53 (08): : 669 - 675
  • [49] Estimation of and correction for finite motion sampling errors in small animal PET rigid motion correction
    Miranda, A.
    Staelens, S.
    Stroobants, S.
    Verhaeghe, J.
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (02) : 505 - 518
  • [50] Accurate hybrid template-based and MR-based attenuation correction using UTE images for simultaneous PET/MR brain imaging applications
    Baran, Jakub
    Chen, Zhaolin
    Sforazzini, Francesco
    Ferris, Nicholas
    Jamadar, Sharna
    Schmitt, Ben
    Faul, David
    Shah, Nadim Jon
    Cholewa, Marian
    Egan, Gary F.
    BMC MEDICAL IMAGING, 2018, 18