QUANTUM MARKOV FIELDS ON GRAPHS

被引:29
作者
Accardi, Luigi [1 ]
Ohno, Hiromichi [2 ]
Mukhamedov, Farrukh [3 ]
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, I-00133 Rome, Italy
[2] Shinshu Univ, Fac Engn, Nagano 3808553, Japan
[3] Int Islamic Univ Malaysia, Dept Computat & Theoret Sci, Fac Sci, Kuantan 25710, Pahang, Malaysia
关键词
Generalized Markov state; graph; entangled Markov fields; d-Markov chains; Cayley tree; GROUND-STATES; INFINITE TREE; SPIN CHAINS;
D O I
10.1142/S0219025710004000
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce generalized quantum Markov states and generalized d-Markov chains which extend the notion quantum Markov chains on spin systems to that on C*-algebras defined by general graphs. As examples of generalized d-Markov chains, we construct the entangled Markov fields on tree graphs. The concrete examples of generalized d-Markov chains on Cayley trees are also investigated.
引用
收藏
页码:165 / 189
页数:25
相关论文
共 20 条
[1]  
ACCARDI L, 1983, P ROY IRISH ACAD A, V83, P251
[2]   Quantum Markov fields [J].
Accardi, L ;
Fidaleo, F .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :123-138
[3]   Markovian KMS-states for one-dimensional spin chains [J].
Accardi, L ;
Liebscher, V .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1999, 2 (04) :645-661
[4]  
Accardi L, 2003, P BURG C 15 20 MARCH, P1
[5]  
Accardi L., 1975, Func. Anal. Appl, V9, P1
[6]   Markov states and chains on the CAR algebra [J].
Accardi, Luigi ;
Fidaleo, Francesco ;
Mukhamedov, Farruh .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2007, 10 (02) :165-183
[7]   Entangled Markov chains are indeed entangled [J].
Accardi, Luigi ;
Matsuoka, Takashi ;
Ohya, Masanori .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2006, 9 (03) :379-390
[8]   Entangled Markov chains [J].
Accardi, Luigi ;
Fidaleo, Francesco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2005, 184 (03) :327-346
[9]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[10]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490