Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries

被引:136
作者
Palanisamy, Kowsalya [1 ]
Kim, Yunok [1 ]
Kim, Hansu [2 ]
Kim, Ji Man [1 ,3 ]
Yoon, Won-Sub [1 ]
机构
[1] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea
[2] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[3] Sungkyunkwan Univ, Dept Chem, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Molybdenum oxide; Graphene; Self-assembly; Hybrid nanostructure; Anode; Lithium ion battery; MOLYBDENUM DIOXIDE; FACILE SYNTHESIS; GRAPHENE; STORAGE; OXIDE; NANOSTRUCTURE; NANOPARTICLES; NANOCRYSTALS; NANOSHEETS; GRAPHITE;
D O I
10.1016/j.jpowsour.2014.11.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three dimensional (3D) porous self-assembled MoO2/graphene microspheres are successfully synthesized via microwave-assisted hydrothermal process in a short reaction time followed by thermal annealing. Such rationally designed multifunctional hybrid nanostructure is constructed from interconnected MoO2 nanoparticles (3-5 nm), which is self-assembled into ordered nanoporous microspheres via strong electrostatic attraction between graphene sheets and MoO2 nanoparticles. The MoO2/graphene hybrid structure delivers a high reversible capacity with significantly enhanced cycling stability (similar to 1300 mAh g(-1) after 80 cycles at C/10 rate) and excellent rate capability (913 and 390 mAh g(-1) at 2C and 5C rates, respectively), when used as an anode material. The microspheres are interconnected and well encapsulated by the flexible graphene sheets, which not only accommodates large volume change but also increases the electrical conductivity of the hybrid structure. Moreover, nanoporous voids present in the 3D framework facilitate effective electrolyte penetration and make a direct contact with the active MoO2 nanoparticles, thereby greatly enhancing lithium ion transport. The strategic combination of selfassembly, nanoporous voids, 3D network and intriguing properties of graphene sheets provides excellent electrochemical performance as anode materials for Lithium ion battery applications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:351 / 361
页数:11
相关论文
共 49 条
[1]   Porous Electrode Materials for Lithium-Ion Batteries - How to Prepare Them and What Makes Them Special [J].
Anh Vu ;
Qian, Yuqiang ;
Stein, Andreas .
ADVANCED ENERGY MATERIALS, 2012, 2 (09) :1056-1085
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery [J].
Bae, Seok-Hu ;
Karthikeyan, Kaliyappan ;
Lee, Yun-Sung ;
Oh, Il-Kwon .
CARBON, 2013, 64 :527-536
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[6]   Structural and electrochemical properties of LiMoO2 [J].
Ben-Kamel, K. ;
Amdouni, N. ;
Groult, H. ;
Mauger, A. ;
Zaghib, K. ;
Julien, C. M. .
JOURNAL OF POWER SOURCES, 2012, 202 :314-321
[7]   MoO2/Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode [J].
Bhaskar, Akkisetty ;
Deepa, Melepurath ;
Rao, Tata Narasinga .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (07) :2555-2566
[8]   Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries [J].
Bhaskar, Akkisetty ;
Deepa, Melepurath ;
Rao, T. N. ;
Varadaraju, U. V. .
JOURNAL OF POWER SOURCES, 2012, 216 :169-178
[9]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[10]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+