l1 MINIMIZATION WITH NOISY DATA

被引:6
作者
Wojtaszczyk, P. [1 ]
机构
[1] Univ Warsaw, Inst Appl Math, PL-02097 Warsaw, Poland
关键词
compressed sensing; restricted isometry property; noise; Kolmogorov widths;
D O I
10.1137/110833130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Compressed sensing aims at recovering a sparse signal x is an element of R-N from few nonadaptive, linear measurements Phi(x) given by a measurement matrix Phi. One of the fundamental recovery algorithms is an l(1) minimization. In this paper we investigate the situation when our measurement Phi(x) is contaminated by arbitrary noise under the assumption that the matrix F satisfies the restricted isometry property. This complements results from [Candes, Romberg, and Tao, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223] and [DeVore, Petrova, and Wojtaszczyk, Appl. Comput. Harmon. Anal., 27 (2009), pp. 275-288].
引用
收藏
页码:458 / 467
页数:10
相关论文
共 13 条
[1]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[2]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[3]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[4]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[5]  
Cohen A, 2009, J AM MATH SOC, V22, P211
[6]  
Cohen A, 2010, CONTEMP MATH, V505, P1
[7]  
DAVENPORT M.A., COMPRESSED IN PRESS
[8]   Instance-optimality in probability with an l1-minimization decoder [J].
DeVore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :275-288
[9]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[10]  
Lorentz George G., 1996, Constructive Approximation: Advanced Problems, V304, DOI New York