Estimates for the lifespan of solutions of an initial-boundary value problem for a nonlinear Sobolev equation with variable coefficient

被引:4
作者
Aristov, A. I.
机构
关键词
Positive Root; Quadrature Formula; Sobolev Type; Sobolev Equation; Chastnykh Proizvodnykh;
D O I
10.1134/S0012266112060031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an initial-boundary value problem for a nonlinear equation of Sobolev type with variable coefficient multiplying the power-law nonlinearity. We obtain sufficient conditions for both time-global and time-local solvability. In the case of local (but not global) solvability, we find two-sided estimates for the lifespan of the solution in the form of quadrature formulas and indicate special cases in which a closed form of these estimates is possible.
引用
收藏
页码:787 / 795
页数:9
相关论文
共 5 条
[1]  
Aristov A.I., 2010, SB STATEI MOLODYKH U, P11
[2]  
Aristov A.I., 2010, NAUCH K TIKH CHT SB, P27
[3]  
Sobolev S., 1954, IZV ACAD SCI USSR MA, V18, P3
[4]  
Sveshnikov A.G., 2008, NELINEINYI FUNKTSION
[5]  
Sveshnikov A.G., 2007, Lineinye i nelineinye uravneniya sobolevskogo tipa (Linear and Nonlinear Equationsof Sobolev Type)