Functional analysis of conserved residues in the putative "finger" domain of telomerase reverse transcriptase

被引:33
作者
Bosoy, D [1 ]
Lue, NF [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Microbiol & Immunol, William Randolph Hearst Microbiol Res Ctr, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M108168200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Telomerase is a ribonucleoprotein reverse transcriptase (RT) responsible for the maintenance of one strand of telomere terminal repeats. The catalytic protein subunit of telomerase, known generically as telomerase reverse transcriptase (TERT), exhibits significant homology to RTs encoded by retroviruses and retroelements. The polymerization mechanisms of telomerase may therefore be similar to those of the "conventional" RTs. In this study, we explored the extent of mechanistic conservation by analyzing mutations of conserved residues within the putative "finger" domain of TERT. Previous analysis has implicated this domain of retroviral RTs in nucleotide and RNA binding and in processivity control. Our results demonstrate that residues conserved between TERT and human immunodeficiency virus-1 RT are more likely than TERT-specific residues to be required for enzyme activity. In addition, residues presumed to make direct contact with either the RNA or nucleotide substrate appear to be functionally more important. Furthermore, distinct biochemical defects can be observed for alterations in the putative RNA- and nucleotide-binding TERT residues in a manner that can be rationalized by their postulated mechanisms of action. This study thus supports a high degree of mechanistic conservation between telomerase and retroviral RTs and underscores the roles of distinct aspects of telomerase biochemistry in telomere length maintenance.
引用
收藏
页码:46305 / 46312
页数:8
相关论文
共 49 条
[1]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[2]   A functional telomerase RNA swap in vivo reveals the importance of nontemplate RNA domains [J].
Bhattacharyya, A ;
Blackburn, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (07) :2823-2827
[3]   TELOMERASES [J].
BLACKBURN, EH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :113-129
[4]   A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :24199-24207
[5]   Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax [J].
Bryan, TM ;
Sperger, JM ;
Chapman, KB ;
Cech, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8479-8484
[6]   Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase [J].
Bryan, TM ;
Goodrich, KJ ;
Cech, TR .
MOLECULAR CELL, 2000, 6 (02) :493-499
[7]   Secondary structure of vertebrate telomerase RNA [J].
Chen, JL ;
Blasco, MA ;
Greider, CW .
CELL, 2000, 100 (05) :503-514
[8]   TELOMERASE IN YEAST [J].
COHN, M ;
BLACKBURN, EH .
SCIENCE, 1995, 269 (5222) :396-400
[9]   PURIFICATION OF TETRAHYMENA TELOMERASE AND CLONING OF GENES ENCODING THE 2 PROTEIN-COMPONENTS OF THE ENZYME [J].
COLLINS, K ;
KOBAYASHI, R ;
GREIDER, CW .
CELL, 1995, 81 (05) :677-686
[10]   The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex [J].
Collins, K ;
Gandhi, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8485-8490