Study a class of nonlinear fractional non-autonomous evolution equations with delay

被引:3
|
作者
Gou, Haide [1 ]
Li, Baolin [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-autonomous evolution equations; Mild solutions; Hilfer fractional derivative; 34K30; 34K45; 35B10; 47D06; DIFFERENTIAL-EQUATIONS; MILD SOLUTIONS; EXISTENCE; UNIQUENESS;
D O I
10.1007/s11868-017-0234-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with a class of nonlinear fractional non-autonomous evolution equations with delay by using Hilfer fractional derivative, which generalized the famous Riemann-Liouville fractional derivative. Combining techniques of fractional calculus, measure of noncompactness and some fixed point theorem, we obtain new existence result of mild solutions when the associated semigroup is not compact. Furthermore, the assumptions that the nonlinear term satisfies some growth condition and noncompactness measure condition. The results obtained improve and extend some related conclusions. Finally, two examples will be presented to illustrate the main results.
引用
收藏
页码:155 / 176
页数:22
相关论文
共 50 条
  • [41] Maximal regularity for non-autonomous evolution equations
    Bernhard H. Haak
    El Maati Ouhabaz
    Mathematische Annalen, 2015, 363 : 1117 - 1145
  • [42] Maximal regularity for non-autonomous evolution equations
    Haak, Bernhard H.
    Ouhabaz, El Maati
    MATHEMATISCHE ANNALEN, 2015, 363 (3-4) : 1117 - 1145
  • [43] Solutions to non-autonomous integrodifferential equations with infinite delay
    Chang, Jung-Chan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (01) : 137 - 151
  • [44] On the maximal regularity for perturbed autonomous and non-autonomous evolution equations
    Ahmed Amansag
    Hamid Bounit
    Abderrahim Driouich
    Said Hadd
    Journal of Evolution Equations, 2020, 20 : 165 - 190
  • [45] On the maximal regularity for perturbed autonomous and non-autonomous evolution equations
    Amansag, Ahmed
    Bounit, Hamid
    Driouich, Abderrahim
    Hadd, Said
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 165 - 190
  • [46] Asymptotic Behavior of Non-autonomous Fractional Stochastic p-Laplacian Equations with Delay on Rn
    Chen, Pengyu
    Zhang, Xiaohui
    Zhang, Xuping
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (04) : 3459 - 3485
  • [47] On stability of stochastic nonlinear non-autonomous systems with delay
    Rodkina, A
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 1125 - 1127
  • [48] UPPER SEMI-CONTINUITY OF ATTRACTORS FOR NON-AUTONOMOUS FRACTIONAL STOCHASTIC PARABOLIC EQUATIONS WITH DELAY
    Chen, Pengyu
    Zhang, Xuping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (08): : 4325 - 4357
  • [49] Fractional non-autonomous evolution equation with nonlocal conditions
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2019, 10 (04) : 955 - 973
  • [50] Fractional non-autonomous evolution equation with nonlocal conditions
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 955 - 973