Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming

被引:25
作者
Yamashita, Hiroshi [1 ]
Yabe, Hiroshi [2 ]
机构
[1] Math Syst Inc, Shinjuku Ku, Tokyo 1600022, Japan
[2] Tokyo Univ Sci, Dept Math Informat Sci, Fac Sci, Shinjuku Ku, Tokyo 1628601, Japan
基金
日本学术振兴会;
关键词
Nonlinear semidefinite programming; Primal-dual interior point method; Local and superlinear convergence; LINEAR COMPLEMENTARITY-PROBLEM; AUGMENTED LAGRANGIAN METHOD; ROBUST-CONTROL; ALGORITHMS; DIRECTION;
D O I
10.1007/s10107-010-0354-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their local and superlinear convergence properties.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 29 条
[1]   Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :746-768
[2]  
[Anonymous], 1965, The algebraic eigenvalue problem
[3]  
Bonnans J.F., 2005, B0506137 CMMDIM U CH
[4]  
Bonnans J.F., 2013, PERTURBATION ANAL OP
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[6]   A global algorithm for nonlinear semidefinite programming [J].
Correa, R ;
Ramirez, HC .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :303-318
[7]   Robust control via sequential semidefinite programming [J].
Fares, B ;
Noll, D ;
Apkarian, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1791-1820
[8]   An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory [J].
Fares, B ;
Apkarian, P ;
Noll, D .
INTERNATIONAL JOURNAL OF CONTROL, 2001, 74 (04) :348-360
[9]   Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling [J].
Freund, Roland W. ;
Jarre, Florian ;
Vogelbusch, Christoph H. .
MATHEMATICAL PROGRAMMING, 2007, 109 (2-3) :581-611
[10]   An interior-point method for semidefinite programming [J].
Helmberg, C ;
Rendl, F ;
Vanderbei, RJ ;
Wolkowicz, H .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :342-361