COUNTING SOLUTIONS TO RANDOM CNF FORMULAS

被引:6
作者
Galanis, Andreas [1 ]
Goldberg, Leslie Ann [1 ]
Guo, Heng [2 ]
Yang, Kuan [3 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[2] Univ Edinburgh, Sch Informat, Informat Forum, Edinburgh EH8 9AB, Midlothian, Scotland
[3] Shanghai Jiao Tong Univ, John Hoperoft Ctr Comp Sci, Shanghai 200240, Peoples R China
基金
欧洲研究理事会;
关键词
random k-SAT; approximate counting; satisfiability; RANDOM K-SAT; NUMBER; THRESHOLDS; UNIQUENESS; COLORINGS; ALGORITHM; WALKSAT;
D O I
10.1137/20M1351527
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give the first efficient algorithm to approximately count the number of solutions in the random k-SAT model when the density of the formula scales exponentially with k. The best previous counting algorithm for the permissive version of the model was due to Montanari and Shah and was based on the correlation decay method, which works up to densities (1 + o(k)(1)) 2 log k/k , the Gibbs uniqueness threshold for the model. Instead, our algorithm harnesses a recent technique by Moitra to work for random formulas with much higher densities. The main challenge in our setting is to account for the presence of high-degree variables whose marginal distributions are hard to control and which cause significant correlations within the formula.
引用
收藏
页码:1701 / 1738
页数:38
相关论文
共 43 条
  • [1] On the Concentration of the Number of Solutions of Random Satisfiability Formulas
    Abbe, Emmanuel
    Montanari, Andrea
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (03) : 362 - 382
  • [2] The threshold for random k-SAT is 2k log 2-O(k)
    Achlioptas, D
    Peres, Y
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) : 947 - 973
  • [3] Achlioptas D, 2002, ANN IEEE SYMP FOUND, P779, DOI 10.1109/SFCS.2002.1182003
  • [4] The number of satisfying assignments of random 2-SAT formulas
    Achlioptas, Dimitris
    Coja-Oghlan, Amin
    Hahn-Klimroth, Max
    Lee, Joon
    Mueller, Noela
    Penschuck, Manuel
    Zhou, Guangyan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2021, 58 (04) : 609 - 647
  • [5] Algorithmic Barriers from Phase Transitions
    Achlioptas, Dimitris
    Coja-Oghlan, Amin
    [J]. PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 793 - +
  • [6] A PARALLEL ALGORITHMIC VERSION OF THE LOCAL LEMMA
    ALON, N
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (04) : 367 - 378
  • [7] APPROXIMATION VIA CORRELATION DECAY WHEN STRONG SPATIAL MIXING FAILS
    Bezakova, Ivona
    Galanis, Andreas
    Goldberg, Leslie Ann
    Guo, Heng
    Stefankovic, Daniel
    [J]. SIAM JOURNAL ON COMPUTING, 2019, 48 (02) : 279 - 349
  • [8] SAMPLING IN UNIQUENESS FROM THE POTTS AND RANDOM-CLUSTER MODELS ON RANDOM REGULAR GRAPHS
    Blanca, Antonio
    Galanis, Andreas
    Goldberg, Leslie Ann
    Stefankovic, Daniel
    Vigoda, Eric
    Yang, Kuan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 742 - 793
  • [9] DETERMINISTIC ALGORITHMS FOR THE LOVASZ LOCAL LEMMA
    Chandrasekaran, Karthekeyan
    Goyal, Navin
    Haeupler, Bernhard
    [J]. SIAM JOURNAL ON COMPUTING, 2013, 42 (06) : 2132 - 2155
  • [10] WALKSAT STALLS WELL BELOW SATISFIABILITY
    Coja-Oghlan, A.
    Haqshenas, A.
    Hetterich, S.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (02) : 1160 - 1173