Insights into the High-Temperature Oxidation Behavior of Austenitic Stainless Steel and Influence of Copper on It

被引:6
|
作者
Li, Juan [1 ,2 ,3 ]
Li, Huaying [1 ,2 ,3 ]
Zhao, Guanghui [1 ,2 ,3 ]
Zhou, Cunlong [1 ,2 ,3 ]
Ma, Lifeng [1 ,2 ,3 ]
Liu, Haitao [4 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Mech Engn, Taiyuan 030024, Peoples R China
[2] Shanxi Prov Key Lab Met Device Design Theory & Te, Taiyuan, Peoples R China
[3] Coordinat Innovat Ctr Taiyuan Heavy Machinery Equ, Taiyuan, Peoples R China
[4] Northeastern Univ, Key Lab Rolling & Automat, Shenyang 110819, Peoples R China
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
austenitic stainless steel; copper; oxide scale; OXIDE SCALE; CORROSION; DEFORMATION; ALLOY;
D O I
10.1007/s11665-020-04911-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antibacterial austenitic stainless steel containing copper is emerging as an interesting biomaterial. To study the evolution of oxide scale of copper-containing austenitic stainless steel and the influence of copper on the oxidation behavior of austenitic stainless steel, a series of experiments was carried out in this paper. Samples of 304L steel and 4.35%Cu-304L steel were heated to high temperature (600-1250 degrees C/30-120 min) and hot rolled at different pre-rolling temperatures. The evolution of microstructure and composition of the oxide scale were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. It was found that the thickness of the 4.35%Cu-304L scale was reduced compared to the thickness of the 304L scale after heating and rolling, which demonstrated that copper increased the oxidation resistance of austenitic stainless steel. However, mixed oxides containing Cu spinel were present in the oxide layer. Therefore, the copper forms oxides during high-temperature oxidation, which cause further cracking during the rolling process. These results will provide basic guidance for the optimal design of production process for antibacterial austenitic stainless steel.
引用
收藏
页码:3661 / 3669
页数:9
相关论文
共 50 条
  • [1] Insights into the High-Temperature Oxidation Behavior of Austenitic Stainless Steel and Influence of Copper on It
    Juan Li
    Huaying Li
    Guanghui Zhao
    Cunlong Zhou
    Lifeng Ma
    Haitao Liu
    Journal of Materials Engineering and Performance, 2020, 29 : 3661 - 3669
  • [2] HIGH-TEMPERATURE OXIDATION BEHAVIOR OF AUSTENITIC STAINLESS-STEELS
    HALES, R
    WERKSTOFFE UND KORROSION-MATERIALS AND CORROSION, 1978, 29 (06): : 393 - 399
  • [3] Effect of Aluminizing on the High-Temperature Oxidation Behavior of an Alumina-Forming Austenitic Stainless Steel
    S. Rashidi
    J. P. Choi
    J. W. Stevenson
    A. Pandey
    R. K. Gupta
    JOM, 2019, 71 : 109 - 115
  • [4] Effect of Aluminizing on the High-Temperature Oxidation Behavior of an Alumina-Forming Austenitic Stainless Steel
    Rashidi, S.
    Choi, J. P.
    Stevenson, J. W.
    Pandey, A.
    Gupta, R. K.
    JOM, 2019, 71 (01) : 109 - 115
  • [5] ON THE INFLUENCE OF COLD WORK ON THE OXIDATION BEHAVIOR OF SOME AUSTENITIC STAINLESS-STEELS - HIGH-TEMPERATURE OXIDATION
    LANGEVOORT, JC
    FRANSEN, T
    GELLINGS, PJ
    OXIDATION OF METALS, 1984, 21 (5-6): : 271 - 284
  • [6] High-Temperature Oxidation Behaviour of CrSi Coatings on 316 Austenitic Stainless Steel
    Gurtaran, Mikdat
    Zhang, Zhenxue
    Li, Xiaoying
    Dong, Hanshan
    MATERIALS, 2023, 16 (09)
  • [7] High-temperature oxidation behaviour of nanostructure surface layered austenitic stainless steel
    Singh, Digvijay
    Cemin, Felipe
    Jimenez, Mawin J. M.
    Antunes, Vinicius
    Alvarez, Fernando
    Orlov, Dmytro
    Figueroa, Carlos A.
    Hosmani, Santosh S.
    APPLIED SURFACE SCIENCE, 2022, 581
  • [8] Effect of Nb on high-temperature oxidation of austenitic stainless steel at 850 °C
    Wang, Fan
    Xiao, Gui-zhi
    Zou, De-ning
    Zhang, Kai-xin
    Zhang, Xiao-ming
    Li, Yang
    Tong, Li-bo
    Jiang, Yi-cheng
    Song, Bo
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2024, : 1003 - 1012
  • [9] High-temperature oxidation of sintered austenitic stainless steel containing boron or yttria
    Peruzzo, M.
    Beux, T. D.
    Ordonez, M. F. C.
    Souza, R. M.
    Farias, M. C. M.
    CORROSION SCIENCE, 2017, 129 : 26 - 37
  • [10] High-Temperature Oxidation Behavior of Medium-Manganese Austenitic Steel
    Guo, Yu
    Zhao, Jianhua
    Wang, Chun
    Gu, Cheng
    Wang, Yajun
    STEEL RESEARCH INTERNATIONAL, 2023, 94 (12)