Structure and Function of Cyanobacterial DHDPS and DHDPR

被引:18
作者
Christensen, Janni B. [1 ]
da Costa, T. P. Soares [1 ]
Faou, Pierre [1 ]
Pearce, F. Grant [2 ,3 ]
Panjikar, Santosh [4 ,5 ]
Perugini, Matthew A. [1 ]
机构
[1] La Trobe Univ, La Trobe Inst Mol Sci, Dept Biochem & Genet, Bundoora, Vic 3086, Australia
[2] Univ Canterbury, Biomol Interact Ctr, Christchurch 8140, New Zealand
[3] Univ Canterbury, Sch Biol Sci, Christchurch 8140, New Zealand
[4] Australian Synchrotron, Clayton, Vic 3168, Australia
[5] Monash Univ, Dept Biochem & Mol Biol, Clayton, Vic 3800, Australia
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
PROTEIN SECONDARY STRUCTURE; CIRCULAR-DICHROISM SPECTRA; SIZE-DISTRIBUTION ANALYSIS; HUMAN APOLIPOPROTEIN E3; DIHYDRODIPICOLINATE SYNTHASE; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; LYSINE BIOSYNTHESIS; 3-DIMENSIONAL STRUCTURE; BACILLUS-ANTHRACIS;
D O I
10.1038/srep37111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 angstrom and 2.83 angstrom, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.
引用
收藏
页数:12
相关论文
共 62 条
[1]   Identification of the bona fide DHDPS from a common plant pathogen [J].
Atkinson, Sarah C. ;
Hor, Lilian ;
Dogovski, Con ;
Dobson, Renwick C. J. ;
Perugini, Matthew A. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (09) :1869-1883
[2]   Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition [J].
Atkinson, Sarah C. ;
Dogovski, Con ;
Downton, Matthew T. ;
Czabotar, Peter E. ;
Dobson, Renwick C. J. ;
Gerrard, Juliet A. ;
Wagner, John ;
Perugini, Matthew A. .
PLANT MOLECULAR BIOLOGY, 2013, 81 (4-5) :431-446
[3]   Crystal, Solution and In silico Structural Studies of Dihydrodipicolinate Synthase from the Common Grapevine [J].
Atkinson, Sarah C. ;
Dogovski, Con ;
Downton, Matthew T. ;
Pearce, F. Grant ;
Reboul, Cyril F. ;
Buckle, Ashley M. ;
Gerrard, Juliet A. ;
Dobson, Renwick C. J. ;
Wagner, John ;
Perugini, Matthew A. .
PLOS ONE, 2012, 7 (06)
[4]   Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera [J].
Atkinson, Sarah C. ;
Dogovski, Con ;
Newman, Janet ;
Dobson, Renwick C. J. ;
Perugini, Matthew A. .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 :1537-1541
[5]   iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM [J].
Battye, T. Geoff G. ;
Kontogiannis, Luke ;
Johnson, Owen ;
Powell, Harold R. ;
Leslie, Andrew G. W. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2011, 67 :271-281
[6]   Crystal structure of dihydrodipicolinate synthase (BA3935) from Bacillus anthracis at 1.94 Å resolution [J].
Blagova, E ;
Levdikov, V ;
Milioti, N ;
Fogg, MJ ;
Kalliomaa, AK ;
Brannigan, JA ;
Wilson, KS ;
Wilkinson, AJ .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (01) :297-301
[7]   Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy [J].
Blickling, S ;
Renner, C ;
Laber, B ;
Pohlenz, HD ;
Holak, TA ;
Huber, R .
BIOCHEMISTRY, 1997, 36 (01) :24-33
[8]   Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure [J].
Blickling, S ;
Beisel, HG ;
Bozic, D ;
Knäblein, J ;
Laber, B ;
Huber, R .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 274 (04) :608-621
[9]  
BUEHNER M, 1973, P NATL ACAD SCI USA, V70, P3052, DOI 10.1073/pnas.70.11.3052
[10]   Structure and evolution of a novel dimeric enzyme from a clinically important bacterial pathogen [J].
Burgess, Benjamin R. ;
Dobson, Renwick C. J. ;
Bailey, Michael F. ;
Atkinson, Sarah C. ;
Griffin, Michael D. W. ;
Jameson, Geoffrey B. ;
Parker, Michael W. ;
Gerrard, Juliet A. ;
Perugini, Matthew A. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (41) :27598-27603