ANALYSIS OF THE TURBULENCE PARAMETERISATIONS FOR THE ATMOSPHERIC SURFACE LAYER

被引:4
作者
Caggio, M. [1 ,3 ]
Bodnar, T. [1 ,2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Czech Tech Univ, Fac Mech Engn, Karlovo Namesti 13, Prague 12135 2, Czech Republic
[3] Univ LAquila, Dept Engn Informat Sci & Math, Via Vetoio, I-67100 Laquila, Italy
来源
TOPICAL PROBLEMS OF FLUID MECHANICS 2018 | 2018年
关键词
Atmospheric boundary layer; Monin-Obukhov similarity theory; turbulence parameterisations; strong stratification; critical Richardson number; CRITICAL RICHARDSON-NUMBER; CLOSURE-MODEL; STABILITY; LAND;
D O I
10.14311/TPFM.2018.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The purpose of this short communication is to present a method that aims to express the turbulent variables in the atmospheric surface-layer in function of the stability of the atmosphere. The case of very stable conditions (strong stratification), where theoretical approaches provide conflicting results (see Luhar et al. [11]), is analysed in detail to provide some insight into the limits of applicability for some of the most popular models of turbulence. The problem of the existence of the critical flux Richardson number is also taken into account.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [21] Coherence of simulated atmospheric boundary-layer turbulence
    Zeng Jiadong
    Li Zhiguo
    Li Mingshui
    FLUID DYNAMICS RESEARCH, 2017, 49 (06)
  • [22] An explicit algebraic model of the planetary boundary layer turbulence: test computation of the neutrally stratified atmospheric boundary layer
    Kurbatskii, A. F.
    Kurbatskaya, L. I.
    THERMOPHYSICS AND AEROMECHANICS, 2017, 24 (05) : 705 - 717
  • [23] The Effect of Scale on the Applicability of Taylor's Frozen Turbulence Hypothesis in the Atmospheric Boundary Layer
    Higgins, Chad W.
    Froidevaux, Martin
    Simeonov, Valentin
    Vercauteren, Nikki
    Barry, Caitlin
    Parlange, Marc B.
    BOUNDARY-LAYER METEOROLOGY, 2012, 143 (02) : 379 - 391
  • [24] Atmospheric Stability Influences on Coupled Boundary Layer and Canopy Turbulence
    Patton, Edward G.
    Sullivan, Peter P.
    Shaw, Roger H.
    Finnigan, John J.
    Weil, Jeffrey C.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2016, 73 (04) : 1621 - 1647
  • [25] On the eddy mixing and energetics of turbulence in a stable atmospheric boundary layer
    A. F. Kurbatskii
    L. I. Kurbatskaya
    Izvestiya, Atmospheric and Oceanic Physics, 2012, 48 : 595 - 602
  • [26] Impact of middle atmospheric humidity on boundary layer turbulence and clouds
    Malap, Neelam
    Prabha, T. V.
    Karipot, A.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2021, 215
  • [27] The Atmospheric Boundary Layer and the "Gray Zone" of Turbulence: A Critical Review
    Honnert, Rachel
    Efstathiou, Georgios A.
    Beare, Robert J.
    Ito, Junshi
    Lock, Adrian
    Neggers, Roel
    Plant, Robert S.
    Shin, Hyeyum Hailey
    Tomassini, Lorenzo
    Zhou, Bowen
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (13)
  • [28] ATMOSPHERIC TURBULENCE STRUCTURE ABOVE URBAN NONHOMOGENEOUS SURFACE
    Drozd, I. D.
    Repina, I. A.
    Gavrikov, A., V
    Stepanenko, V. M.
    Artamonov, A. Yu
    Pashkin, A. D.
    Varentsov, A., I
    RUSSIAN JOURNAL OF EARTH SCIENCES, 2022, 22 (05):
  • [29] Kolmogorov Constants of Atmospheric Turbulence over a Homogeneous Surface
    CHENG Xue-Ling~1
    Atmospheric and Oceanic Science Letters, 2010, 3 (04) : 195 - 200
  • [30] Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows
    Narasimhan, Ghanesh
    Gayme, Dennice F.
    Meneveau, Charles
    BOUNDARY-LAYER METEOROLOGY, 2024, 190 (04)