Reidemeister-Turaev torsion modulo one of rational homology three-spheres

被引:6
作者
Deloup, F
Massuyeau, G
机构
[1] Univ Toulouse 3, Lab Emile Picard, CNRS, UMR 5580, F-31062 Toulouse 04, France
[2] Univ Nantes, Lab Jean Leray, CNRS, UMR 6629, F-44322 Nantes, France
关键词
rational homology 3-sphere; Reidemeister torsion; complex spin structure; quadratic function;
D O I
10.2140/gt.2003.7.773
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an oriented rational homology 3-sphere M, it is known how to associate to any Spin (c)-structure sigma on M two quadratic functions over the linking pairing. One quadratic function is derived from the reduction modulo 1 of the Reidemeister-Turaev torsion of ( M, sigma), while the other one can be defined using the intersection pairing of an appropriate compact oriented 4-manifold with boundary M. In this paper, using surgery presentations of the manifold M, we prove that those two quadratic functions coincide. Our proof relies on the comparison between two distinct combinatorial descriptions of Spin (c)-structures on M: Turaev's charges vs Chern vectors.
引用
收藏
页码:773 / 787
页数:15
相关论文
共 19 条
[1]  
Atiyah M.F., 1971, Ann. Sci. Ecole Norm. Sup., V4, P47
[2]   On abelian quantum invariants of links in 3-manifolds [J].
Deloup, F .
MATHEMATISCHE ANNALEN, 2001, 319 (04) :759-795
[3]  
Deloup F, 2002, ARXIVMATHGT0207188
[4]  
GILLE C, 1998, THESIS U NANTES
[5]  
HIRZEBRUCH F, 1959, SEMINAIRE BOURBAKI, V177
[6]   SPIN STRUCTURES AND QUADRATIC-FORMS ON SURFACES [J].
JOHNSON, D .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 22 (OCT) :365-373
[7]  
KIRBY R, 1981, LNM, V1374
[8]  
Lawson H.B., 1989, Spin geometry (PMS-38)
[9]  
LESCOP C, 1996, ANN MATH STUDIES, V140
[10]   QUADRATIC-FUNCTIONS AND SMOOTHING SURFACE SINGULARITIES [J].
LOOIJENGA, E ;
WAHL, J .
TOPOLOGY, 1986, 25 (03) :261-291