Bifurcation of Limit Cycles from a Quintic Center via the Second Order Averaging Method

被引:5
作者
Peng, Linping [1 ]
Feng, Zhaosheng F [2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Math & Syst Sci, LIMB, Minist Educ, Beijing 100191, Peoples R China
[2] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
The averaging method; bifurcation; limit cycle; period annulus; homogeneous perturbation; quintic system; QUADRATIC PERTURBATIONS; SYSTEM; SHAPE;
D O I
10.1142/S0218127415500479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the bifurcation of limit cycles from a quintic system with one center. By using the averaging theory, we show that under any small quintic homogeneous perturbations, up to order 1 in e, at most three limit cycles bifurcate from periodic orbits of the considered system, and this upper bound can be reached. Up to order 2 in e, at most seven limit cycles emerge from periodic orbits of the unperturbed one.
引用
收藏
页数:18
相关论文
共 27 条
  • [1] [Anonymous], NONLINEAR OSCILLATIO
  • [2] Arnol'd V. I., 1986, DYNAMICAL SYSTEMS
  • [3] The number of limit cycles of a quintic polynomial system with center
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3008 - 3017
  • [4] BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS
    BLOWS, TR
    PERKO, LM
    [J]. SIAM REVIEW, 1994, 36 (03) : 341 - 376
  • [5] Averaging methods for finding periodic orbits via Brouwer degree
    Buica, A
    Llibre, J
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01): : 7 - 22
  • [6] Limit cycles of a perturbed cubic polynomial differential center
    Buica, Adriana
    Llibre, Jaume
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (03) : 1059 - 1069
  • [7] A unified proof on the weak Hilbert 16th problem for n=2
    Chen, F
    Li, CZ
    Llibre, J
    Zhang, ZH
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) : 309 - 342
  • [8] BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES
    CHICONE, C
    JACOBS, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) : 268 - 326
  • [9] Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
  • [10] Limit cycles bifurcating from a perturbed quartic center
    Coll, Bartomeu
    Llibre, Jaume
    Prohens, Rafel
    [J]. CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 317 - 334