Bifurcation of Limit Cycles from a Quintic Center via the Second Order Averaging Method

被引:5
作者
Peng, Linping [1 ]
Feng, Zhaosheng F [2 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Sch Math & Syst Sci, LIMB, Minist Educ, Beijing 100191, Peoples R China
[2] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78539 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
The averaging method; bifurcation; limit cycle; period annulus; homogeneous perturbation; quintic system; QUADRATIC PERTURBATIONS; SYSTEM; SHAPE;
D O I
10.1142/S0218127415500479
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the bifurcation of limit cycles from a quintic system with one center. By using the averaging theory, we show that under any small quintic homogeneous perturbations, up to order 1 in e, at most three limit cycles bifurcate from periodic orbits of the considered system, and this upper bound can be reached. Up to order 2 in e, at most seven limit cycles emerge from periodic orbits of the unperturbed one.
引用
收藏
页数:18
相关论文
共 27 条
[1]  
[Anonymous], NONLINEAR OSCILLATIO
[2]  
Arnol'd V. I., 1986, DYNAMICAL SYSTEMS
[3]   The number of limit cycles of a quintic polynomial system with center [J].
Atabaigi, Ali ;
Nyamoradi, Nemat ;
Zangeneh, Hamid R. Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :3008-3017
[4]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[5]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[6]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[7]   A unified proof on the weak Hilbert 16th problem for n=2 [J].
Chen, F ;
Li, CZ ;
Llibre, J ;
Zhang, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :309-342
[8]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES [J].
CHICONE, C ;
JACOBS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :268-326
[9]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[10]   Limit cycles bifurcating from a perturbed quartic center [J].
Coll, Bartomeu ;
Llibre, Jaume ;
Prohens, Rafel .
CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) :317-334