Interpolation multiplicity assignment algorithms for algebraic soft-decision decoding of Reed-Solomon codes

被引:0
作者
El-Khanty, M [1 ]
McEliece, RJ [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
来源
ALGEBRAIC CODING THEORY AND INFORMATION THEORY | 2005年 / 68卷
关键词
error correcting codes; Reed-Solomon codes; soft-decision decoding; algebraic soft decoding; list decoding; Curuswami-Sudan algorithm; Chernoff bound; maximum likelihood; burst error correcting codes; interpolation multiplicities;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In an attempt to determine the ultimate capabilities of the Sudan-Guruswami/Kotter-Vardy algebraic soft-decision decoding algorithm for Reed-Solomon codes, we present a new method, based on the Chernoff bound, for assigning interpolation multiplicities for algebraic soft-decision list decoding. A mathematical framework for optimizing the interpolation multiplicities is laid down. In many cases, the algorithm developed in this paper demonstrates that the potential performance of algebraic soft-decision decoding of Reed-Solomon codes is significantly better than previously thought.
引用
收藏
页码:99 / 120
页数:22
相关论文
共 25 条
[1]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[2]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI 10.1017/CBO9780511804441
[3]  
El-Khamy M., 2004, P 42 ALL C COMM CONT, P1
[4]  
ELKHAMY M, 2004, P INT S INF THEOR IT
[5]  
ELKHAMY M, 2004, P INT S INF THEOR CH
[6]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[7]  
GROSS WJ, 2000, UNPUB IEEE T COMMUN
[8]   Improved decoding of Reed-Solomon and algebraic-geometry codes [J].
Guruswami, V ;
Sudan, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :1757-1767
[9]  
HAGENAUER J, 1989, GLOBECOM 89
[10]  
Kelley C. T., 2003, SOLVING NONLINEAR EQ, DOI DOI 10.1137/1.9780898718898