JointCL: A Joint Contrastive Learning Framework for Zero-Shot Stance Detection

被引:0
|
作者
Liang, Bin [1 ,2 ]
Zhu, Qinglin [1 ]
Li, Xiang [1 ]
Yang, Min [3 ]
Gui, Lin [4 ]
He, Yulan [4 ,5 ]
Xu, Ruifeng [1 ,6 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Peoples R China
[2] Joint Lab HITSZ & China Merchants Secur, Shenzhen, Peoples R China
[3] Chinese Acad Sci, SIAT, Shenzhen, Peoples R China
[4] Univ Warwick, Dept Comp Sci, Coventry, W Midlands, England
[5] Alan Turing Inst, London, England
[6] Peng Cheng Lab, Shenzhen, Peoples R China
来源
PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS) | 2022年
基金
英国科研创新办公室; 中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot stance detection (ZSSD) aims to detect the stance for an unseen target during the inference stage. In this paper, we propose a joint contrastive learning (JointCL) framework, which consists of stance contrastive learning and target-aware prototypical graph contrastive learning. Specifically, a stance contrastive learning strategy is employed to better generalize stance features for unseen targets. Further, we build a prototypical graph for each instance to learn the target-based representation, in which the prototypes are deployed as a bridge to share the graph structures between the known targets and the unseen ones. Then a novel target-aware prototypical graph contrastive learning strategy is devised to generalize the reasoning ability of target-based stance representations to the unseen targets. Extensive experiments on three benchmark datasets show that the proposed approach achieves state-of-the-art performance in the ZSSD task(1).
引用
收藏
页码:81 / 91
页数:11
相关论文
共 50 条
  • [1] Zero-Shot Stance Detection via Contrastive Learning
    Liang, Bin
    Chen, Zixiao
    Gui, Lin
    He, Yulan
    Yang, Min
    Xu, Ruifeng
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2738 - 2747
  • [2] Enhancing Zero-Shot Stance Detection with Contrastive and Prompt Learning
    Yao, Zhenyin
    Yang, Wenzhong
    Wei, Fuyuan
    ENTROPY, 2024, 26 (04)
  • [3] A meta-contrastive learning with data augmentation framework for zero-shot stance detection
    Wang, Chunling
    Zhang, Yijia
    Wang, Shilong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [4] Zero-Shot Stance Detection via Sentiment-Stance Contrastive Learning
    Zou, Jiaying
    Zhao, Xuechen
    Xie, Feng
    Zhou, Bin
    Zhang, Zhong
    Tian, Lei
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 251 - 258
  • [5] Feature Enhanced Zero-Shot Stance Detection via Contrastive Learning
    Zhao, Xuechen
    Zou, Jiaying
    Zhang, Zhong
    Xie, Feng
    Zhou, Bin
    Tian, Lei
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 900 - 908
  • [6] Adversarial Distillation Adaptation Model with Sentiment Contrastive Learning for Zero-Shot Stance Detection
    Yu Zhang
    Chunling Wang
    Jia Wang
    International Journal of Computational Intelligence Systems, 16
  • [7] Adversarial Distillation Adaptation Model with Sentiment Contrastive Learning for Zero-Shot Stance Detection
    Zhang, Yu
    Wang, Chunling
    Wang, Jia
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [8] Commonsense-based adversarial learning framework for zero-shot stance detection
    Zhang, Hao
    Li, Yizhou
    Zhu, Tuanfei
    Li, Chuang
    NEUROCOMPUTING, 2024, 563
  • [9] CONNECTING TARGETS VIA LATENT TOPICS AND CONTRASTIVE LEARNING: A UNIFIED FRAMEWORK FOR ROBUST ZERO-SHOT AND FEW-SHOT STANCE DETECTION
    Liu, Rui
    Lin, Zheng
    Fu, Peng
    Liu, Yuanxin
    Wang, Weiping
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7812 - 7816
  • [10] A Survey of Zero-Shot Stance Detection
    Liu, Guangzhen
    Zhao, Kai
    Zhang, Linlin
    Bi, Xuehua
    Lv, Xiaoyi
    Chen, Cheng
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT V, NLPCC 2024, 2025, 15363 : 107 - 120