LUNG NODULE SEGMENTATION USING DEEP LEARNED PRIOR BASED GRAPH CUT

被引:0
|
作者
Mukherjee, Suvadip [1 ]
Huang, Xiaojie [2 ]
Bhagalia, Roshni R. [2 ]
机构
[1] GE Global Res, Bangalore, Karnataka, India
[2] GE Global Res, Niskayuna, NY USA
来源
2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017) | 2017年
关键词
CT; segmentation; graph cuts; CNN; IMAGE DATABASE CONSORTIUM; PULMONARY NODULES; RESOURCE;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose an automated framework for lung nodule segmentation from pulmonary CT scan using graph cut with a deep learned prior. The segmentation problem is formulated as a hybrid cost function minimization task, which combines a domain specific data term with a deep learned probability map. The proposed segmentation framework embodies the robustness of deep learning in object localization, while retaining the hallmark of traditional segmentation models in addressing the morphological intricacies of elaborate objects. The proposed solution offers more than 20% performance improvement over a contemporary data driven model, and also outperforms traditional graph cuts especially in situations where model initialization is slightly inaccurate.
引用
收藏
页码:1205 / 1208
页数:4
相关论文
共 50 条
  • [1] GRAPH CUT BASED AUTOMATIC PROSTATE SEGMENTATION USING LEARNED SEMANTIC INFORMATION
    Mahapatra, Dwarikanath
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 1316 - 1319
  • [2] Lung parenchyma segmentation and nodule detection using deep learning
    Nandeesh, G. S.
    Nagabushanam, M.
    Pramodkumar, S.
    Nandini, S.
    JOURNAL OF OPTICS-INDIA, 2024, 53 (01): : 635 - 642
  • [3] Lung Nodule Segmentation with a Region-Based Fast Marching Method
    Savic, Marko
    Ma, Yanhe
    Ramponi, Giovanni
    Du, Weiwei
    Peng, Yahui
    SENSORS, 2021, 21 (05) : 1 - 32
  • [4] Lung parenchyma segmentation and nodule detection using deep learning
    G. S. Nandeesh
    M. Nagabushanam
    S. Pramodkumar
    S. Nandini
    Journal of Optics, 2024, 53 : 635 - 642
  • [5] Lung_PAYNet: a pyramidal attention based deep learning network for lung nodule segmentation
    Bruntha, P. Malin
    Pandian, S. Immanuel Alex
    Sagayam, K. Martin
    Bandopadhyay, Shivargha
    Pomplun, Marc
    Hien Dang
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Enhanced Automatic Lung Segmentation Using Graph Cut for Interstitial Lung Disease
    Ming, Joel Than Chia
    Noor, Norliza Mohd
    Rijal, Omar Mohd
    Kassim, Rosminah M.
    Yunus, Ashari
    2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2014, : 17 - 21
  • [7] Hard exudates segmentation based on learned initial seeds and iterative graph cut
    Kusakunniran, Worapan
    Wu, Qiang
    Ritthipravat, Panrasee
    Zhang, Jian
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 173 - 183
  • [8] A Texture-Based Probabilistic Approach for Lung Nodule Segmentation
    Zinoveva, Olga
    Zinovev, Dmitriy
    Siena, Stephen A.
    Raicu, Daniela S.
    Furst, Jacob
    Armato, Samuel G.
    IMAGE ANALYSIS AND RECOGNITION: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, PT II: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, 2011, 6754 : 21 - 30
  • [9] Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation
    Singadkar, Ganesh
    Mahajan, Abhishek
    Thakur, Meenakshi
    Talbar, Sanjay
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (03) : 678 - 684
  • [10] Lung nodule classification based on deep learning networks and handcraft segmentation
    Salvador-Torres, Luis G.
    Almaraz-Damian, Jose A.
    Ponomaryov, Volodymyr, I
    Reyes-Reyes, Rogelio
    Cruz-Ramos, Clara
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2022, 2022, 12102