Boundedness for parabolic singular integral with rough kernels and its commutators on Triebel-Lizorkin spaces

被引:0
作者
Tao, Shuang Ping [1 ]
Niu, Yao Ming [2 ]
机构
[1] NW Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Peoples R China
[2] Baotou Teachers Coll, Fac Math, Baotou 014030, Peoples R China
基金
中国国家自然科学基金;
关键词
Parabolic singular integral; Triebel-Lizorkin spaces; commutator; parabolic BMO; DECOMPOSITIONS; OPERATORS; CURVES;
D O I
10.1007/s10114-011-8372-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors give the boundedness on Triebel-Lizorkin spaces for the parabolic singular integral with rough kernel and its commutator.
引用
收藏
页码:1783 / 1802
页数:20
相关论文
共 50 条
[41]   Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces [J].
Feng Liu ;
Qingying Xue ;
Kz Yabuta .
Science China(Mathematics), 2020, 63 (05) :907-936
[42]   On the boundedness of operators in Lp (lq) and Triebel-Lizorkin Spaces [J].
Boto, Joao Pedro .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2008, 6 (02) :177-186
[43]   BOUNDEDNESS AND CONTINUITY FOR VARIATION OPERATORS ON THE TRIEBEL-LIZORKIN SPACES [J].
Liu, Feng ;
Wen, Yongming ;
Zhang, Xiao .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) :1539-1555
[44]   Convergence of truncated rough singular integrals supported by subvarieties on Triebel-Lizorkin spaces [J].
Liu, Feng ;
Xue, Qingying ;
Yabuta, Kozo .
FRONTIERS OF MATHEMATICS IN CHINA, 2019, 14 (03) :591-604
[45]   SINGULAR INTEGRALS RELATED TO HOMOGENEOUS MAPPINGS IN TRIEBEL-LIZORKIN SPACES [J].
Liu, Feng ;
Wu, Huoxiong .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04) :1075-1097
[46]   Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms [J].
Liu, Liguang ;
Yang, Dachun .
STUDIA MATHEMATICA, 2009, 190 (02) :163-183
[48]   Integral operators of Marcinkiewicz type on Triebel-Lizorkin spaces [J].
Liu, Feng .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (01) :75-96
[49]   A NOTE ON SINGULAR INTEGRALS WITH DOMINATING MIXED SMOOTHNESS IN TRIEBEL-LIZORKIN SPACES [J].
Hung Viet Le .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) :1331-1344
[50]   The boundedness of composition operators on Triebel-Lizorkin and Besov Spaces with different homogeneities [J].
Wei Ding .
Acta Mathematica Sinica, English Series, 2014, 30 :933-948